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EXECUTIVE SUMMARY 

In recent years natural disasters such as hurricanes, floods, and winter storms, have caused 

significant losses and disruptions to infrastructure, communities, and the economy. Effective 

preparation and quick response to natural disasters is very important for the mitigation of 

such losses and disruptions. As an important part of natural disaster preparation and 

response, evacuations often occur before or after a natural disaster. However, an effective 

evacuation involves complex planning, preparation and operations. Moreover, diverse human 

evacuation behavior, such as staying or evacuating from home, taking public transportation 

or driving private vehicles, and different times and routes to leave from the affected area, 

complicates the management of mass evacuations.   

In the first phase of this CATM project, we investigated the components of North 

Carolina’s Intelligent Transportation System (ITS), which include smart traffic signals, 

cameras, meters, and dynamic message signs, and then identified potential actions for traffic 

control of an ITS during a hurricane evacuation. We also investigated the most affected 

airlines at the most affected airport during Hurricane Matthew, and proposed and tested the 

quantitative methods to estimate the number of affected passengers during the hurricane, 

quantify a hurricane disruption to the U.S. airport network, and identify feasible airports to 

reroute flights from a disrupted airport. Our results showed that the topology of an airline’s 

flight network may influence the number of flight passengers affected by a hurricane 

disruption, and that the proposed quantitative methods can identify the airports to be 

disrupted by an approaching hurricane and feasible airports for rerouting flights from the 

disrupted airports. 

For hurricane evacuation, we requested and collected historical data related to 

hurricane evacuations from different sources. These data were used to discover spatial-

temporal evacuation traffic patterns, predict the hourly traffic during the hurricane 

evacuation, and investigate significant cues for Evacuation Planners’ decisions during a 

hurricane evacuation. Our analysis results showed that the traffic volume at a sensor location 

could be predicted by the traffic volumes at the sensor locations in the same county and 

adjacent counties, and revealed that the sensor locations at the same county and adjacent 

counties form the cluster, and the 25 sensor locations can be grouped into the four clusters. 

Real‐Time Traffic Control in an ITS System during an Emergency Evacuation 1 



 

  

 

 

 

  

  

 

 

 

   

    

  

   

  

  

  

  

 

Our results also showed that only one (wind speed) of the seven cues tested contributes to 

Evacuation Planners’ decision. 

The proposed graph theoretical and rerouting methods can support airports and 

airlines administrators to recognize the airports that might be affected by an approaching 

hurricane, and identify potential airports to divert flights from the affected airports. The 

predictive models created in our studies can be used to manage hurricane evacuations, 

including proper traffic control, estimating emergency responders needed, and preparing 

enough evacuation supplies such as gas, water, food, and hotel rooms. These models and 

findings will help emergency response agencies deploy effective evacuation operations and 

improve the mobility of the people and evacuation resources during a hurricane. Our results 

of the first phase of this CATM project have been published as three peer-reviewed 

conference papers and presented as posters and oral presentations at national professional 

conferences and regional transportation conferences and symposiums. One journal paper has 

been submitted. In addition, four graduate students (including one African American student 

and two female students) and two female undergraduate students (including one African 

American student) have been involved in this CATM project. The participation of these 

students can contribute to the diversity of the U.S. transportation workforce in the future. 
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DESCRIPTION OF PROBLEM 

As part of natural disaster preparation and response, evacuations often occur before or after 

natural disasters such as hurricanes and earthquakes. For example, nearly 7 million Florida 

residents evacuated from the state during Hurricane Irma (2017), making it the largest 

hurricane evacuation in the U.S. and causing significant traffic congestion and fuel shortage 

in Florida. Hurricane Irma also caused significant disruption to air transportation in Florida. 

Nearly 4000 flights were canceled according to one report by Flight Aware. In addition to 

canceling and diverting flights, airlines also added flights to get passengers out of the storm’s 

path and moved their planes (some of which cost $100 million) to other safe cities. United 

Airlines, Delta, and American added flights in advance of the hurricane to help get stranded 

passengers out of the storm’s path. The storm’s ripple effects were felt in other cities like 

Atlanta, where Delta canceled nearly 1000 flights, resulting in many passengers stranded at 

the airport. During Hurricane Florence (2018), evacuation orders were issued to 25 counties 

in North Carolina and South Carolina, causing approximately 1 million Carolinians to 

evacuate from their homes. However, some residents chose to shelter in place despite 

mandatory evacuation issued in their counties. Traffic congestion and fuel shortages occurred 

in the eastern coastal areas in North Carolina even though the state government prepared for 

the evacuation by closing public schools and issuing evacuation orders 3 days before landfall, 

arranging evacuation paths, and providing evacuation guides. A worse issue was that some 

people could not evacuate due to the closure of a bridge when they chose to evacuate later. 

Therefore, it is obvious that effective and proper traffic control is crucial during a mass 

evacuation. 

Recently, information and communication technologies (ICT) have been incorporated 

in the N.C. transportation infrastructure to build intelligent transportation systems (ITSs), 

which include smart actuated signals, dynamic message signs, the roadway weather 

information system, reversible lane systems, and the traveler information management 

system. These ITSs provide us with opportunities to improve the effectiveness and efficiency 

of emergency response. For example, smart traffic signals and the traffic coordination 

network enable emergency vehicles to respond to incidents rapidly. During natural disasters, 

ITSs can also play an important role in mass emergency evacuations. In this CATM project, 
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we aimed to develop and integrate ecological models for human evacuation behavior 

prediction and hurricane evacuation traffic control in intelligent transportation infrastructure. 

The ultimate goal is to create a human-centered intelligent traffic control recommendation 

system to support mass evacuations. The research questions of the first phase of our CATM 

project are: 

 What factors and actions in the current NC ITSs should be considered when 

recommending an initial traffic control plan to prepare for a hurricane 

evacuation? 

 What are significant factors or cues for evacuation planners to make hurricane 

evacuation decisions? 

 How should effective policies be designed for airline carriers to minimize the 

number of passengers and planes stranded in the path of a hurricane, i.e., 

scheduling additional flights? 

 How are evacuation traffic flows spatial-temporal associated, and how can the 

evacuation traffic volumes be predicted based on their spatial-temporal 

associations? 
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METHODOLOGY AND RESULTS 

In this CATM project, we conducted five studies addressing hurricane evacuation and 

weather-related flights recovery. Before we conducted these studies, we investigated the 

components of North Carolina’s Intelligent Transportation System (ITS), and identified the 

potential actions that are supported by the smart components in the current N.C. road 

transportation system, and can be used to improve traffic control during a hurricane 

evacuation. We also requested and collected historical data related to hurricane evacuations 

from different sources to support our CATM studies. The methodology and results of our 

five studies in Phase 1 of this CATM project are described in detail in the following 

subsections.  

Study 1 – Transportation Network Resilience in Charlotte, North Carolina for Day-to-

Day Disruptions 

1.1 Research Problem 

Daily disruptions to transportation systems are almost inevitable. These disruptions such as 

weather conditions, human errors, and/or technical failures, that occur on a daily basis, often 

cause delays and congestion to the transportation system, which ultimately result in the waste 

of fuel and time for each automotive commuter. Cities with large populations and high 

utilization of their transportation systems are vulnerable to such disruptions. For example, 

Charlotte, North Carolina, is a major city, ranking the 16th most populous city in the United 

States, having a population that is over 872,000 [1]. Being such a large city, it is the hub of 

major businesses, travel, and events, which often means that there is high utilization of its 

road network. In other words, there is a high volume of vehicles that travel through 

Charlotte’s transportation system. 

Transportation network disruptions can cause traffic congestion and delays. 

According to the 2019 Urban Mobility Report from Texas A&M Transportation Institute, it 

is estimated that an auto commuter in Charlotte was delayed 57 hours as well as consumed 

22 gallons of excess fuel yearly due to congestion, resulting in a yearly congestion cost of 

$1,269 per auto commuter [2]. For this reason, this study aimed to analyze the network 

connectivity and topology as well as the traffic volumes of the road transportation network of 
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Charlotte, NC, to quantify the resilience of the overall transportation network and to identify 

the road segments that are the most critical to the efficiency of the transportation network 

with respect to daily disruptions. In this study, two approaches, betweenness centrality and 

hierarchal cluster analysis, were used to identify critical road segments in Charlotte. 

1.2 Methodology 

To identify critical road segments and examine the resiliency of the transportation network of 

Charlotte, we first define the scope of the transportation network. In this study, we focused 

on the U.S. interstates and highways since they are the most driven upon and have the highest 

traffic volume on average. The transportation network we define consists of U.S. interstates 

85, 485, 77, 277, and U.S. highways 21, 29, and 74. The links in our defined network are the 

road segments, while the nodes are the exits or the intersection of two road segments. We 

also defined a set of starting nodes and ending nodes. The starting and ending nodes 

represent the most populated cities surrounding Charlotte, including Concord City, Gastonia, 

Huntersville and Indian Trail in North Carolina, and Rock Hill in South Carolina. We then 

collected and processed the data to compute the weighted edge betweenness centrality of 

each road segment, as well as to conduct a hierarchal cluster analysis. The results from this 

study can be used to make recommendations for strategic route planning, which could 

ultimately aid in the reduction of excess fuel consumption, delay, and congestion costs per 

auto commuter. 

1.2.1 Data Preparation and Processing  

In this study, Google Maps was used to determine the latitude and longitude of each 

intersection, which were later used to determine the distance of each road segment in the 

transportation network. After data regarding the intersections and links had been collected, 

Python 3.4 and the package, Networkx were utilized to compute the betweenness centrality 

for the links. 

The AADT for 2018 was collected from the NCDOT’s website, which was used as a 

variable in the hierarchal cluster analysis. Both variables, AADT and distance, were 

normalized to [0, 1] to reduce the influence of outliers and avoid that one variable is much 
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more dominant than the other. The variables were normalized using Equation (1). Note that 

the descriptive statistics and distributions of both variables can be seen in Section 1.3. 

 ௫ି௫ 𝑥 = (1) 
௫ೌೣି௫ 

1.2.2 Edge Betweenness Centrality Indicator 

The weighted edge betweenness centrality algorithm is utilized to assess road resilience by 

identifying, topologically, vulnerable road segments and intersections in Charlotte’s highway 

transportation network. Let 𝐺(𝑉, 𝐸) represent the transportation network of interest, where 

𝑉 = {𝑣ଵ, 𝑣ଶ, … , 𝑣, 𝑠ଵ, 𝑠ଶ, … , 𝑠, 𝑡ଵ, 𝑡ଶ, … 𝑡}  denotes the set of locations and intersections 

(nodes) and 𝐸 = ൛𝑒ଵ, 𝑒ଶ, … , 𝑒ൟ represents the set of road segments (links) between each node. 

Each edge 𝑒 is associated with a weight 𝑤 > 0, which represents the traveling distance or 

time through the edge. 

Given a transportation network 𝐺(𝑉, 𝐸), the weighted edge betweenness centrality 

algorithm computes the betweenness centrality for each road segment within the network 

using 

ఙ(𝑠, 𝑡|𝑒)
𝐶(𝑒) = ∑௦∈ௌ,௧∈் , (2)

ఙ(௦,௧) 

where 𝑠 ∈ {𝑠ଵ, 𝑠ଶ, … , 𝑠} ⊂ 𝑉, 𝑡 ∈ {𝑡ଵ, 𝑡ଶ, … 𝑡} ⊂ 𝑉, 𝜎(𝑠, 𝑡) denotes the number of shortest 

paths from node s to node t, and 𝜎(𝑠, 𝑡|𝑒) represents the number of the shortest paths from s 

to t including edge 𝑒. A shortest path from node s to node t is defined as a path from s to t 

with a minimum total weight of the edges in the path [3]. Using the edge betweenness 

centrality algorithm, a betweenness centrality value is computed for each road segment in the 

Charlotte transportation network. The road segments with the highest betweenness centrality 

values are the most critical to the overall topological structure of the network. Although there 

are other centrality indicators, such as degree centrality and closeness centrality, to consider, 

we chose edge betweenness centrality since it allows us to identify critical road segments 

such that the disruption (removal) of those road segments (links) to the transportation 

network could affect the fluidity of the traffic between many pairs of intersections through 

the shortest paths between them [4]. 
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1.2.3 Hierarchal Cluster Analysis 

A hierarchal cluster analysis was conducted using Python 3.4 to classify and identify critical 

road segments in the transportation network of Charlotte. The parameters used were the 

annual daily traffic for 2018 and the distance of each road segment (in miles). The 

dendrogram (Figure 1.1) was computed using the Euclidean distance formula. From the 

dendrogram, we conclude that the k value (number of clusters) should be 3. 

Figure 1.1: Dendrogram of road segments using Euclidean distance. 

1.3 Results and Discussion 

When exploring the data, we found that there were some extreme outliers in the average 

annual daily traffic (AADT) for 2018. Although the AADT and distance variables used 

contained extreme outliers, there were no erroneous values or inputs; the data occurred 

naturally given the dataset. Thus, none of the extreme outliers were dropped; however, both 

variables were normalized. The descriptive statistics of the AADT and the distance of each 

road segment are shown in Table 1.1. Figures 1.2 and 1.3 show the distribution of both 

variables, AADT, and distance. 

Real‐Time Traffic Control in an ITS System during an Emergency Evacuation 8 



 

  

    

 

   

 

 

 

 

 

 

  

 

Table 1.1: Descriptive statistics of the distances and average annual daily traffic for each 

road segment 

Descriptive Statistics Distance (miles) AADT 2018 

count 36 36 

mean 4.386 100546 

std 2.880 39155 

min 0.4 15500 

0.25 1.95 83604 

0.5 3.9 99833 

0.75 5.65 126786 

max 12.1 174500 

Figure 1.2: Histogram of the distances of each road segment. 
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Figure 1.3: Histogram of the average annual daily traffic of each road segment. 

After conducting the betweenness centrality analysis, we found that the road segments 

received a betweenness centrality value of either 0, 1, or 2. Figure 1.4 shows the transportation 

network with the betweenness centrality values colored as blue for 0, red for 1, and green for 

2. The higher the betweenness centrality, the more critical the road segment to the entire 

transportation network. 

Figure 1.4: Charlotte highway segments grouped based on betweenness centrality. 
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To identify critical road segments, a hierarchal cluster analysis was conducted. After 

computing and examining the dendrogram, we allocated the observations to 3 different 

clusters, i.e., green, blue, and red clusters in Figure 1.5. In the figure, we notice that road 

segments that belong to the green cluster have the highest AADT, while those grouped in the 

red cluster, on average, have a lower AADT but a longer distance. On the other hand, the 

blue cluster contains road segments that have a higher AADT, on average, but a shorter 

distance. Figure 1.6 shows the transportation network considering the cluster groupings.  

Figure 1.5:  Clustering of road segments. 

Figure 1.6: Charlotte highway segments clustered based on 2018 AADT. 
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Our results show that road segments of U.S. Interstates 485 and 77 and U.S. Highway 

74 have the highest betweenness centrality value. This reveals that those are the most central 

links of the topological structure in the Charlotte highway transportation network. The 

disruption (removal) of the most critical links could affect the fluidity of the traffic through 

the shortest paths between many pairs of origins and destinations. Based on the hierarchal 

cluster analysis results, we conclude that the road segments belonging to the green cluster are 

the most critical since these road segments have the highest AADTs compared to the other 

road segments although they are not the longest road segments. This means that these road 

segments are more likely to be congested with an occurrence of disruption compared to the 

other road segments due to high traffic volume. The links that belong to the green cluster are 

road segments of U.S. Interstate 85 and 77 and U.S. Highway 74.  

Study 2 – Data-Driven Approach to Estimate Airline Passengers Disruption 

2.1 Research Problem 

The United States (U.S.) airline companies serve millions of passengers and contribute to the 

country’s economy in billions every year [5, 6]. To ensure passenger safety, convenience, 

and economic value, uninterrupted and efficient functioning of airline services is necessary. 

However, disruptions are not uncommon in an air transportation system, and disruption of 

any kind impacts planned flight schedules and can also lead to downstream effects. As per 

Bureau of Transportation Statistics (BTS) annual reports, more than 50% of disruptions in 

the aviation system are weather-related [5]. Hurricanes are one of the weather-related 

incidents that can significantly disrupt air travel due to their inclement nature. Moreover, 

some studies pointed out the fact that the network structure of air transportation or airlines 

might influence the general functionality of airlines operations [7]. During a disruption, 

different recovery actions could be implemented, and over the years, different planning and 

recovery tools or methods have been proposed [8-10]. Research on developing robust 

recovery methods and flight schedules may be essential for alleviating an airport system-

related disruption. To achieve this, a prior step of appropriate data analysis of airport or 

airline big data might be influential in recommending certain actions during a disruption. In 

this study, we consider two-month flight data pertaining to four main airports in the southeast 
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region of the U.S. During the time frame considered in this dataset, Hurricane Matthew 2016 

occurred. In this research, we set out to achieve the following research objectives: 

1. To identify the most affected airlines and understand the influence of their 

network structure on the impact created during a hurricane disruption.  

2. To estimate the possible number of impacted passengers during a hurricane 

disruption.  

2.2 Methodology 

The data used for this study was purchased from a leading provider of digital information 

called OAG [11]. The data set consists of 117,644 rows and 18 columns of information, for 

the period between September 1st, 2016 to October 31st, 2016. The scope of the data is 

limited to the departures and arrivals of four major airports in the Southeastern United States 

for all airline carriers. These airports are Orlando International Airport (MCO), Raleigh-

Durham International Airport (RDU), Norfolk International Airport (ORF), and Ronald 

Reagan Washington National Airport (DCA). Hurricane Matthew was characterized as a 

post-tropical cyclone between September 28th, 2016 and October 9th, 2016. Hurricane 

Matthew in 2016 had its impact on states of Florida, Georgia, North Carolina, South 

Carolina, and certain parts of Virginia between October 7th, 2016 and October 9th, 2016 [12, 

13]. Therefore, we selected this time period for our analysis. The data was filtered to remove 

rows with erroneous/empty information for further analysis (i.e., “NULL” values). We used 

the Networkx [14] package and other Python packages to conduct the data analysis.  

Among the four airports present in our data set, we identified the most affected 

airport based on the change in their flight connections. The most affected airlines were 

recognized based on the summation of the count of flights for every airline for each selected 

day and affected airport. The network structure of the identified affected airlines was further 

analyzed to understand its impact on operations. To estimate the possible number of affected 

passengers, we have developed a set of mathematical equations. To conduct experiments 

with the developed equations, we have utilized the available number of seats in our dataset 

and load factors from the BTS website [15]. For the detailed version of our methods, please 

refer to our published work [16]. 
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2.3 Results and Discussion 

As per our analysis, during Hurricane Matthew, 2016, Orlando International Airport (MCO) 

was the most affected airport among the four airports present in the data set. MCO flight data 

was analyzed to understand different affected airlines. From Figure 2.1, we recognized the 

trend for every airline as the visualization shows the number of departure flights for each 

airline. As far as MCO departures are concerned, the most affected airlines in terms of the 

number of flights were American Airlines (AA), Delta Airlines (DL), Frontier Airlines (F9), 

JetBlue Airways (B6), Southwest Airlines (WN), Spirit Airlines (NK), and United Airlines 

(UA). Figures 2.2 – 2.8 show the network structures of these seven airlines constructed with 

the flight data present in the data set.  Southwest was the most affected carrier with the 

highest number of flights canceled on October 6th, 7th, and 8th followed by JetBlue Airways. 

Spirit Airlines and Frontier Airlines were the least affected among the seven carriers. From 

examining the network topology and patterns of the seven affected airlines, most of them 

follow either a traditional hub-spoke model or focus city model except Southwest. Southwest 

Airlines follows a rolling hub model [17, 18]. However, further analysis of the network 

topology of Southwest along with other airlines is required for a stronger validation. 

Figure 2.1: Departures at MCO before, during, and after the hurricane. 
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Figure 2.2: Network structure for American Airlines 

Figure 2.3: Network structure for Delta Airlines 
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Figure 2.4: Network structure for Frontier Airlines 

Figure 2.5: Network structure for JetBlue Airways 
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Figure 2.6: Network structure for Southwest Airlines 

Figure 2.7: Network structure for Spirit Airlines 
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Figure 2.8: Network structure for United Airlines 

Further, the predicted number of passengers for the seven affected airlines at MCO 

was determined. A comparison was made between these seven airlines based on the 

computation of the percentage of the predicted number of passengers. Figure 2.9 shows the 

percentage of the predicted number of affected passengers for departures of these seven 

airlines before, during, after the hurricane. The negative percentage value signifies the 

possible percentage of affected passengers for an airline carrier and excessively planned 

passengers if it is positive. From Figure 2.3, unlike other airlines, Southwest Airlines took 

almost two days to recover after the disruption at MCO caused by Hurricane Matthew. As 

MCO was completely closed on October 7th, 2016, it is evident that all the seven other 

carriers were affected only on this day.  
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Figure 2.9: Percent of affected passengers for seven carrier airlines departures at MCO 

before, during, and after the hurricane. 

From our analysis, we may relate the airline’s network topology with its possible 

number of affected passengers. However, extensive experimentation is required to develop 

and validate this relation. Moreover, the data-driven approach proposed in this study serves 

as a preliminary step to understand factors that influence passenger scheduling before, 

during, and after a disruption. In this study, we identified MCO to be the most affected 

airport and Southwest to be the most affected airline at this airport. Being aware of such 

information might aid in alleviating passenger disruption to a certain extent. As the data-

driven approach does not discriminate the type of airport and kind of disruption, this 

methodology can also be extended to any other airport and disruption type.  

Study 3 – A Graph Theoretical Approach Integrating Geospatial Information to 

Analyze Airport Network Disruptions 

3.1 Research Problem 

Disruptions in an air transportation system are not uncommon in occurrence, and especially 

weather-related ones are harder to predict and control due to their stochastic nature. 

Hurricane and tropical storms are some of the weather-related disruptions that can lead to 
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significant economic impact along with root and propagated disruptions [19, 20]. In the past, 

a significant number of flights were canceled and delayed during certain hurricanes [21, 22]. 

The weather disruptions can also lead to significant delay costs, loss of passengers’ goodwill, 

distorted operations and many more [23]. Due to the inclement and stochastic nature of 

certain weather-related events, it is not always possible to eliminate disruptions of this kind. 

However, locating airports in an airport network that might be impacted ahead of time may 

help in either planning or providing opportunities for recovery of a disruption. Additionally, 

there will be airports that will be affected due to these originally impacted airports. 

Therefore, capturing these two types of airports in an airport network might help in efficient 

planning, rescheduling, and recovery when a disruption occurs. Moreover, there might be a 

scenario where a flight path gets affected due to its proximity to a disrupted geographical 

zone. There are certain real-time situations where flights were diverted using different 

airports to avoid disruption or any adverse events, and it is essential to consider geography to 

include such scenarios [24, 25]. From our literature review, we have identified that 

geography consideration is absent when conducting airport network analysis related research 

[26-28]. In this study, we introduce this missing element as a geospatial scenario. Overall, we 

propose a graph theoretical method integrating geospatial elements to quantify airports from 

two different perspectives: disruptor and disruptee. A disruptor is an airport that gets 

impacted during a disruption along with flight routes connecting from or via this airport. A 

disruptee is an airport that is impacted by a disruptor. A pair of disruptor and disruptee is two 

airports where the latter is dependent on the former.  In addition, we propose a rerouting 

method to discover feasible airports for rerouting from a disrupted airport. 

3.2 Methodology 

In this study, we propose theoretical methods to quantify airports in an airport network from 

two different perspectives. In addition, we propose a rerouting method to identify feasible 

airports to reroute from a disrupted airport. To quantify the extent to which an airport is a 

disruptor, we propose a mathematical equation with three components: the immediate, the 

intermediate, and the geospatial components. The immediate component captures all 

immediate connections from an airport, whereas the intermediate component captures flight 
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routes for which an airport is an intermediate connection. The geospatial element captures 

flight routes that lie within a disrupted airport zone. The higher value of the disruptor 

equation indicates a highly disrupted airport and vice versa if it is a lower value. 

To estimate the extent to which an airport could be a disruptee, we propose the 

disruptee equation. The disruptee equation consists of three components: the destination 

component, the transition component, and the geographical component. The destination 

component captures the number of flight paths originating from an airport that are affected 

due to a disruptor airport being their final destination. The transition component captures 

flight routes from an airport for which disruptor airports act as an intermediate connection. 

The geographical component estimates the flight paths from an airport that fall under the 

disrupted zone of the airport. Once the airports in an airport network are classified as 

disruptors and disruptees, rerouting passengers to different airports might aid in either 

avoiding or alleviating passenger disruption. 

As a part of the rerouting method, we propose the rerouting metric that helps in 

identifying feasible airports for rerouting from a disrupted airport. It consists of three 

components: the change in disruptee equation value, the network proportion, and the airline 

network proportion. The change in disruptee equation value helps in quantifying an airport as 

either less or more disrupted than a disruptee. The network proportion helps in understanding 

if a similar set of destination airports are being operated from disruptee and rerouting 

airports. The airline network proportion indicates if the same airline companies are operating 

to the destinations from disruptee and rerouting airports.  

To implement the proposed theoretical methods, we have constructed an airport 

network from world airlines routes data extracted from an open online source called 

“openflights.org”. The U.S. airport network constructed based on this data consisted of 2465 

routes between 354 airports on 60 airlines. The hurricane forecast data available on National 

Hurricane Center is extracted to know storm location and time. For the detailed version of the 

proposed methodology and the data extraction process, please refer to the dissertation [29]. 

All the equations, methods, and analyses are developed as algorithms using Python 

programming [30]. 
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3.3 Results and Discussion 

To test the proposed methods, we have conducted a series of experiments considering 

hypothetical hurricane impact distance. We considered Fort Lauderdale/Hollywood 

International Airport (FLL) as a disruptor and 62 miles as a hurricane impact distance. With 

FLL as a disruptor, we have computed the disruptee equation values for remaining airports in 

an airport network. The top 20 disruptees with their respective component values are shown 

in Table 3.1. Though the destination and the transition component values are small for certain 

airports, they still appear as a top disruptee due to the geographical component value. This 

shows that there is a good chance of airports to be geographically impacted. The rerouting 

method was used to discover feasible airports within a distance of 50 miles for these top 20 

disruptees. As a result, we have identified feasible airports for rerouting flights from each 

disruptee. The component values of the rerouting metric for the identified airports are as 

shown in Figure 3.1. Each airport is represented by its IATA code. 

Table 3.1: Top 20 disruptees when FLL is a disruptor at a hurricane impact distance of 62 miles. 

Airport 
(IATA 
code) 

Destination 
Component 

Transition 
Component 

Geographical 
Component 

Disruptee 
Equation 

Value 

Airport Name 

MIA 0.00000 0.02912 1.00000 0.50925 Miami International Airport, FL 
PBI 0.00000 0.03196 1.00000 0.50275 Palm Beach International Airport, FL 

ORH 0.50000 0.49150 0.03437 0.41035 Worcester Regional Airport, MA 
IAG 0.20000 0.60032 0.03789 0.38100 Niagara Falls International Airport, NY 
LBE 0.33333 0.42184 0.03073 0.33681 Arnold Palmer Regional Airport, PA 
PBG 0.20000 0.38758 0.03908 0.28485 Plattsburgh International Airport, NY 
EYW 0.12500 0.14984 0.29092 0.26624 Key West International Airport, FL 
SWF 0.20000 0.24047 0.03509 0.21616 New York Stewart International 

Airport, NY 
AVL 0.12500 0.17682 0.03611 0.15903 Asheville Regional Airport, NC 
ISP 0.09091 0.13293 0.09280 0.15144 Long Island MacArthur Airport, NY 

ACY 0.11111 0.13678 0.03450 0.13376 Atlantic City International Airport, NJ 
HPN 0.06667 0.10938 0.07984 0.12382 Westchester County Airport, NY 
LEX 0.07692 0.10731 0.03632 0.10619 Blue Grass Airport, KY 
RIC 0.05556 0.07678 0.08405 0.10527 Richmond International Airport, VA 
TTN 0.07692 0.10428 0.03480 0.10400 Trenton-Mercer Airport, NJ 
GNV 0.00000 0.02736 0.19887 0.10283 Gainesville Regional Airport, FL 
BDL 0.04348 0.06736 0.09290 0.09970 Bradley International Airport, CT 
MYR 0.05000 0.09627 0.03527 0.08855 Myrtle Beach International Airport, SC 
TYS 0.05882 0.08556 0.03567 0.08745 McGhee Tyson Airport, TN 
JAX 0.04167 0.06560 0.07049 0.08707 Jacksonville International Airport, FL 
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Figure 3.1: Rerouting airport choices within 50 miles radius for disruptees identified when 

FLL is a disruptor. 

The airline network proportion value is zero for BUF airport when IAG is a disruptee. 

This shows that there are no common airline companies that operate to the destinations of 

BUF and IAG. The rerouting metric component values provide guidance in determining the 

most feasible airport when there are multiple choices for rerouting for certain disruptees. In 

Figure 3.1, ISP and HPN airports have multiple rerouting choices, whereas IAG and PBG 

airports have a single one.  

Further experimentation revealed that ORD, DEN, and ATL are the top three 

disruptors in the U.S. airport network irrespective of the hurricane impact distance. 

Moreover, mostly large hub airports appeared as top 20 disruptors. Based on the adapted 

Hurricane Matthew, 2016 scenario, our results showed that the change in hurricane impact 

distance and forecast track do have an impact on identifying potential disruptors and their 

respective disruptees. This, in turn, impacted in discovering potential airports for rerouting. 

Please refer to the dissertation for detailed experimental results and findings [29]. 
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Study 4 – Judgment Characterization for Emergency Evacuation Using Lens Model: A 

Machine Learning Approach 

4.1 Research Problem 

Intelligent Transportation Systems play an important role in mass emergency evacuations. In 

dealing with all humanitarian aspects of emergencies, emergency preparedness and disaster 

management are essential. Evacuation Planners (EP) and individuals' decisions during 

emergency preparation involve complex behavioral factors [31]. This study proposes to 

characterize EPs’ decision-making behavior during emergency evacuation using machine 

learning algorithms and statistical methods. In doing so, a decision-making tool, the 

Brunswik Lens model, is used to describe the correlation between the environment and the 

behavior of organisms in the environment. Additionally, identifying significant cues for 

residents to decide dynamic evacuation routes under an uncertain environment and having 

incomplete information is somewhat limited due to how stochastic decision-making can be.  

4.2 Methodology and Results 

In the modeling process, a judgment model is created with cues influencing the judgment. 

The researchers [32-34] considered the variables including wind speed, rainfall, number of 

households affected, flood level, median household income, and the poverty level. These 

variables (cues) were found to influence evacuation in North Carolina while preparing for an 

impending hurricane. The goal is to create a judgment model for an emergency to gain 

insight into the decision behavior of the various entities involved when the environment 

presents multiple cues. 

The Judgment data about Hurricane Matthew was retrieved from multiple federal, 

state governments and other websites. All data collected are related to counties that were 

affected by Hurricane Matthew in the state of North Carolina. The weather-related data were 

collected from October 8th to 9th, 2016, when the hurricane approached. Socio-economic data 

such as poverty, median household income level, poverty level data, and disaster data were 

obtained for the year 2016 from the United States Census Bureau (USCB), United States 

Department of Agriculture Economic Research Service (USDA), and WebEOC [35], 

respectively. Weather data were mainly taken from National Oceanic and Atmospheric 
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Administration (NOAA) -and United States Geological Survey, respectively. The data 

collected consisted of seven variables and 42 observations (counties). All seven variables 

examined were numerical and were normally distributed. 

4.2.1 Brunswik Lens model 

Figure 4.1 shows the Brunswik Linear Lens Model representation of single-system 

design (ecological criterion unavailable or not of interest) [36]. The Lens Model framework 

and its related parameters can capture and quantify judgment policies. Figure 4.1(a) 

represents the model of the criterion or environment. This model describes the relationship 

between the ecological criterion value (e.g., individuals' decision to evacuate or not) and the 

cue values accessible at the time a judgment is made. Figure 4.1(b) represents the judge's 

policy or strategy. It describes the relationship between the cue values and the criterion value. 

In Figure 4.1(b), the judgments are related to each cue, known as cue utilization validity. The 

pattern of cue utilization demonstrated by a judge determines the judgment policy, 𝑌ௌ, 

represents the EPs’ judgment and is modeled as a linear combination of a set of k cues 

(𝑋, 𝑖 = 1, … . , 𝑘). 

𝑌ௌ = ∑ 𝛽௦𝑋 + 𝑒 (3) ୀଵ 

In Equation (3), the 𝛽௦ denotes the weights of the cues that contribute to the judge's decision, 

and e represents the scope to which the cognitive model misses the actual value when trying to 

predict the judgment, 𝑌ௌ [36]. Thus if 𝑌ௌ denotes the cognitive model, then 

𝑌ௌ = 𝑌ௌ + 𝑒 (4) 

The correlation between 𝑌ௌ and 𝑌ௌ denoted by 𝑅௦ measures the cognitive control with which a 

judgment strategy is executed. Consistency refers to the similarity between judgments made to 

repeated profiles of cue information [36]. 

𝑅௦ = corr (𝑌 𝑌 ) (5) ௦ ௦ 

4.2.2 Machine learning algorithms 

Supervised learning is a machine learning technique that uses computational learning theory, 

pattern recognition, and algorithm construction to map inputs to the output. Six (6) machine 

learning algorithms were also used to create the judgment model, namely linear discriminant 

Real‐Time Traffic Control in an ITS System during an Emergency Evacuation 25 



 

  

   

  

     

 

 

 

 

 

  

 

  
 

   

  

 

 

 

  

  

 

 

  

analysis (LDA), K-nearest neighbor (KNN), logistic regression (LR), classification and 

regression tree (CART), Naive-Bayes (NB), support vector machine (SVM). Python 

packages provide algorithms built in their libraries. Figure 4.2 shows the steps in Machine 

Learning. 

(a) 

Cue utilization 
validities 

Wind speed 

Ys Ys' 

Rs 

shelter 

#household 

Poverty percent 

Flood level 

Rainfall 

Judgments 

Median income 

(b) 

Figure 4.1: Brunswik Linear Lens Model representation of single system design (ecological 

criterion unavailable or not of interest). 
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Input 
Data 

Data Pre-
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Descriptive 
Statistics 

Data 
Visualization 

Splitting 
Datasets(75% 
Training 25% 

Testing) 

Cross 
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of the 
model 

Prediction 
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Figure 4.2: Steps in machine learning. 

4.2.3 Evaluation metrics 

The two performance metrics for the evaluation of models were Cross-Validation Accuracy 

(CVA) and Prediction/Model Accuracy (Accuracy). A 10-fold cross-validation is used in this 

study, and the accuracy is defined as: 
்ା்ே 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑃𝐴) =  , (6)
்ା்ேାிାிே 

where TP, TN, FP and FN represent true positive, true negative, false positive, and false 
negative, respectively. 

4.2.4 Lens model parameter, ( 𝒀𝑺) and 𝑹𝒔 

The supervised machine learning techniques; LR, LDA, KNN, CART, NB, SVM as shown in 

Figure 4.3, also represented interesting accuracies but did not perfectly estimate the judgment 

model since model accuracies were 0.66, 0.72, 0.69, 0.6, 0.65 and 0.76, respectively. Figure 

4.3 displays the cross-validation accuracy for all the machine learning models and data types 

after 75% of the judgment data is used in training them, and the model accuracy after 25% of 

the data is used to test the model. In the Judgment model, SVM generated a high CVA of 

approximately 73%, and LR, LDA and NB generated a PA of 72.7%. 

The Lens model parameters are computed using the logistic regression for the 

judgment model. This technique is used as an idiographic-statistical approach to 

understanding the characteristics and conditions of individuals' behavior. This approach also 

helps to capture judgment policies as well as aspects of the judgment process. Logistic 

regression provides a statistical model that, in its basic form, uses a logistic function to model 

a dichotomous dependent variable. 
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Figure 4.3: Accuracies of the six machine learning algorithms 

Dependent Variable 

In regression analysis, logistic regression (or logit regression) estimates the 

parameters of a logistic model (a form of binary regression). Mathematically, logistic 

regression estimates a multiple linear regression function defined as: 

(௬ୀଵ)
logit(p) = log ቀ ቁ = 𝛽 + 𝛽ଵ. 𝑥ଵଶ + 𝛽ଶ𝑥ଵଶ + ⋯ 𝛽𝑥 for i = 1,…, n. (7)

ଵି(ୀଵ) 

In the selection of cues, backward elimination regression was used. In the backward 

elimination method, all the cues are initially used to build the model. Subsequently, the cue 

with the highest p-value is eliminated if the p-value is greater than the significance level 

(0.05). This is repeated, and a single cue is eliminated for each iteration until the cue shows a 

p-value less than 0.05. However, in this application, all the cues were eliminated except the 

wind speed. This means that only one of the cue weights contributed well enough to the 

model. The pseudo-R2 value validates the performance of the model. 

Figure 4.4 shows the results of logistic regression for judgment when all cues were 

used. Figure 4.4 shows the R2 for the judgment model ( 𝑌ௌ) and a correlation (r) of 50.2%. 

For the judgment model ( 𝑌ௌ), R2 values were very low indicating that the cues were not able 

to produce the best model. Table 4.1 shows the weighting applied to each cue that 
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contributed to the EPs’ judgment. These weights explain how the judge's policy was made 

based on the cue utilization validities. 

Figure 4.4: Logistic regression output for judgment when all cues were used 

Table 4.1:  Cue weights  

Cues Relative(cue) weight 
Shelters 0.144 
Wind speed (mph) 0.358 
Rainfall (in) 0.217 
Households 0.141 
Food level (ft) 0.016 
Median Income ($) 0.031 
Poverty Percent (%) 0.092 

Independent variables 

The total number of independent variables, also known as the cues in this context, is 

seven (7), as shown in Appendix A. Checking the correlation between the variables (cues) 

helps eliminate all redundant cues. The correlation between two variables is defined as: 

∑(ିത)(௬ି௬ത)
𝑟௫௬ =  , (8)

ඥ∑(ିത)మ ∑(௬ି௬ത)మ 
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where 

 𝑟௫௬  the correlation coefficient of the linear relationship between the variables 

x and y 

 𝑋 – the values of the x-variable in a sample 

 𝑋ത – the mean of the values of the x-variable 

 𝑦 – the values of the y-variable in a sample 

 𝑦ത – the mean of the values of the y-variable 

There were no high positive correlations among cues, as shown in Figure 4.5, 

indicating that all cues are independent and can be used for the prediction 

Figure 4.5: Correlation matrix for the cues 
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Study 5 – Visualization and Prediction Models of Hurricane Evacuation Traffic in 

Eastern North Carolina 

5.1 Research Problem 

Natural disasters affect millions of people, communities, and critical infrastructures every 

year in the world. According to the Center for Research on Epidemiology of Disaster 

(CRED), in 2019, there were 396 climate-related and geophysical disaster events recorded in 

the International Disaster Database (EM-DAT) with 11,755 deaths and over 95 million 

people affected across the world [37]. Over the last decade, the number and intensity of 

natural disasters, especially hurricanes, concerning the U.S. east coast have increased 

notably. According to the statistics, on average, 20 Hurricanes and eight floods have affected 

the United States every year since 2007. Many of them caused significant disruptions and 

losses to the communities, infrastructure, and economy. For example, recent hurricanes such 

as Matthew (2016), Harvey (2017), Irma (2017), Florence (2018), Michael (2018), Dorian 

(2019) affected the U.S. These hurricanes caused many casualties, damaged thousands of 

houses in the United States, and significantly disrupted critical infrastructures in the East 

Coast and Gulf Coast areas. These hurricanes also caused mass evacuations, in which 

millions of people traveled from the affected areas to safe locations before the landfalls. 

Over the years, government agencies have guided millions of people for hurricane 

evacuation through road transportation systems in the best possible way. Similarly, in 

response to an approaching hurricane in North Carolina (N.C.), the government agencies, 

specifically disaster management agency which activates during the forecast of any 

hurricane, need to plan and carry out many preparation activities. One of the critical 

preparation activities is to plan and manage an effective evacuation in the potentially affected 

regions. Proper traffic control, sufficient emergency responders, and enough evacuation 

supplies such as gas, water, food, and hotel rooms are crucial for an effective mass 

evacuation. To decide traffic control policies and predict resources needed during a hurricane 

evacuation, the first step is to estimate the evacuation traffic volume and pattern when a 

hurricane approaches. To meet this need, in this study, we analyzed traffic flow data during 

Hurricane Florence evacuation in N.C. to discover space-time evacuation traffic patterns. 

Hourly traffic flow data during the hurricane evacuations were collected and provided by the 
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Departments of Transportation (DOTs) of North Carolina. Besides, we investigated the 

association of sensor locations to predict the hourly traffic during a hurricane evacuation. 

5.2 Methodology 

The primary sources of the data for this study are traffic counts from the traffic survey group 

of the NC Department of Transportation (NCDOT).  The counties in N.C. are divided into 

fourteen DOT divisions, each division covering a group of the counties [38]. These divisions 

are also referred to as districts. The districts are allotted numbers starting from the eastern 

coast to western mountain regions. We requested the six coastal districts’ traffic volume data 

for Hurricane Florence and Hurricane Dorian. The data sets cover traffic volume one week 

before hurricane landfall, one week during hurricane landfall, and one week after the 

hurricane landfall. In the current study, we analyzed the Hurricane Florence (2018) traffic 

volume data during a hurricane evacuation, i.e., five days before the hurricane landfall at the 

N.C. coastline. The traffic volume data of six coastal districts cover 42 counties in eastern 

North Carolina. The data was provided for thirty-eight sensor locations, consisting of one 

EXCEL file for each sensor location. Each EXCEL file contains the sensor location county, 

route number, lane direction, district number, and hourly traffic volume data with dates. 

Figure 5.1 illustrates the locations of some sensors on the different routes in North Carolina. 

Figure 5.1: Illustration of different sensor locations in North Carolina. 
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Predictive modeling was used in this study to explore and analyze the traffic count 

data, infer the information about the traffic volume at each sensor location, and discover the 

sensor association. The collection and preparation of the input data required for the predictive 

analysis is a crucial step in the analysis. The input data for the predictive analysis was 

retrieved from the traffic count data received from NCDOT. Original data we obtained is 

separated by districts for each hurricane in the EXCEL sheets. For the predictive analysis, 

input data was prepared using different data exploration and data cleaning techniques in 

Python. After preparing the input data for the investigation, the data analysis is performed 

using the steps described in Figure 5.3. After analyzing the predictive analysis results, the 

sensor association was analyzed. Figure 5.2 depicts the overall methodology of the study.  

Figure 5.2: The methodology of the study 

The linear regression [39] was used for assessing the association of traffic among the 

sensors in the study. The dependent variable (DV) for the linear regression is hourly traffic 

volume at a sensor location. The independent variables (IVs) for the linear regression consist 

of traffic volumes at the sensor location before 1 hour, 2 hours, 3 hours, and 4 hours and at 

other adjacent sensor locations before 1 hour, 2 hours, 3 hours, and 4 hours. Within four 

hours, the coastal county population can reach the resource center located at the States capital 

Raleigh.  

The procedure for the statistical analysis is presented in Figure 5.3. In the statistical 

analysis, after preparing the input data and cleaning the data by omitting the data with 

missing value, if there were more than five feature variables (IVs), then the feature selection 

step is performed. In feature selection, we used the “backward elimination” method to select 

the most significant features. As the name suggests, firstly we need to feed all the possible 

Real‐Time Traffic Control in an ITS System during an Emergency Evacuation 33 



 

  

     

  

    

      

    

  

    

  

 

 

 

 
 

 

 

  

    

   

   

   

features to the model. We check the model's performance then iteratively remove the least 

correlated feature one by one until the model's overall performance comes in an acceptable 

range. The metric used to evaluate the feature correlation is p-values. If the p-value of a 

feature is above 0.05, then the feature is removed; otherwise, it is kept in the model. After 

that, we fitted the linear regression model of the selected features to the data, and tested the 

normality of residuals using the Normal QQ-plot and three different normality tests. The 

three normality tests are the Shapiro-Wilk test, the D’Angostino and Pearson’s test, and the 

Anderson-Darling test. If the model passed the three tests, we stopped and accepted the 

model; otherwise, we did the outlier detection analysis.  

Figure 5.3: Procedure for statistical analysis. 

In the outlier detection analysis, we calculate Cook’s distance (CD) to identify the 

most influential observations in outlier detection. The observations with CD > (4/n) were 

dropped, where n is the total number of observations. After dropping the most influential 

observations, we fitted the model to the remaining data and tested the normality of residuals 

again. If the normality tests were passed, we stopped and accepted the model. Following the 

procedure, we fitted the regression models for the 25 selected sensor locations. Furthermore, 
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the regression models were used to study the traffic associations among the sensor locations, 

predicting the traffic volume at a sensor location during hurricane evacuation in the future. 

5.3 Results and Discussion 

Figure 5.4 graphically shows the traffic associations among the sensor locations based 

on the regression models for each location. In the graph, the node representing the sensor, 

and the arrow's direction represents the sensors' association. The incoming arrows to a sensor 

location show that the traffic at that sensor location is predicted from those incoming directed 

sensor locations. For example, the traffic volume at sensor A4201 is predicted by traffic 

volumes at sensor locations A2501, R9111, R9112, R9103, R9113, R9106, R9102, R9107, 

A5001D4, R5001, and previous traffic volumes at the same location A4201. Figure 4.1 

reveals that the 25 locations can be grouped into the four clusters based on their traffic 

associations analytically and topologically.   

Figure 5.4: Sensor association in North Carolina for prediction of traffic volume during a 

hurricane evacuation. 
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Table 5.1: Sensor clusters and the counties they are located in 

Sensor County Cluster 

R9101 Wake 1 

R9102 Wake 1 

R9103 Wake 1 

R9106 Wake 1 

R9107 Wake 1 

R9111 Wake 1 

R9112 Wake 1 

R9113 Wake 1 

R5001 Johnston 1 

A5001D4 Johnston 1 

R3103 Durham 1 

A4201 Harnett 1 

A6301 Nash 1 

A6302 Nash 1 

A9501 Wayne 2 

A3003 Duplin 2 

A7101 Pender 2 

W7002 Pender 2 

A6401 New Hanover 2 

W2301 Columbus 2 

A2702 Dare 3 

W4701 Hyde 3 

Table 5.1. summarizes the sensor clusters and the county they are located in. Figure 

5.1 and Table 5.1 reveal that the sensor locations from the same county and adjacent counties 

form the cluster, and the traffic volume at a sensor location can be predicted by the traffic 

volumes in the same county and adjacent counties. For example, sensors R9106, R9113, 

R9103, R9111, R9112, R9101, R9102, and R9107 in Wake County, sensors A6302 and 

A6301 in Nash County, sensor A4201 in Harnett County, sensors A5001D4 and R5001 in 

Johnston County, and sensor R3103 in Durham County form one significant cluster, and all 

those sensors are located in the same county or adjacent counties. Similarly, sensors A9501, 
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A3003, A7101, W7002, W2301, and A6401 form the second cluster, located in the 

neighboring counties in southeast North Carolina. The sensors in Hyde County and Dare 

County form the third cluster, and the fourth cluster consists of the only sensor (A9001) 

located in Vance County.  

The topological association of the sensors is depicted in Figure 5.5 [40], where Wake 

County and its neighboring counties form the first cluster. The adjacent counties in 

southeastern North Carolina shown in brown color on the map are in the second cluster, and 

the easternmost counties (Dare and Hyde) form the third cluster. This implies that to predict 

the traffic volume at a location, we may need the historical traffic volumes at the same 

location and the traffic volumes at the locations in the same cluster. 

1 

2 

3 

Figure 5.5: Locations of sensor clusters on the North Carolina map 
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FINDINGS, CONCLUSIONS, RECOMMENDATIONS 

In this CATM project, we (1) identified road segments that are critical to the resiliency of 

road transportation system around Charlotte using weighted betweenness centrality and 2018 

average daily traffic (AADT); (2) investigated the most affected airlines at the most affect 

airport during Hurricane Matthew and estimated the number of affected passengers during 

the hurricane using network theory; (3) proposed and tested a graph theoretical approach to 

analyzing the U.S. airport network during a hurricane disruption, and a rerouting method to 

identify feasible airports to reroute from a disrupted airport; (4) investigated significant cues 

for Evacuation Planners’ decisions during hurricane evacuation using the Brunswik Linear 

Lens Model and the six machine learning algorithms; and (5) analyzed traffic flow data 

during Hurricane Florence evacuation in N.C. to discover space-time evacuation traffic 

patterns, and investigated the association of sensor locations to predict the hourly traffic 

during the hurricane evacuation.  

For road transportation, our resiliency analysis showed that the central links with high 

AADT, such as road segments of U.S. Interstate 77 and U.S. Highway 74, are the most 

critical to the resiliency of the highway transportation network around Charlotte, and that 

road segments of U.S. Interstates 85 and 485 around Charlotte are also critical to the road 

network resiliency. For air transportation, our analysis of flight delays due to Hurricane 

Matthew revealed that seven airlines were most affected at the airport of MCO (which was 

the most affected airport), and that the topology of an airline’s flight network may influence 

the number of flight passengers affected by a weather disruption. Based on this finding, a 

graph theoretical method, including two mathematical equations for disrupter and disruptee, 

respectively, has been proposed to quantify airports in an airport network from the two 

perspectives (disrupter and disruptee). Our testing results showed that there is a high chance 

for an airport to be geographically impacted by a hurricane disruption and the rerouting 

method can identify feasible airports for rerouting flights from the disruptees. The proposed 

graph theoretical and rerouting methods can support airports and airlines administrators to 

recognize the airports that might be affected by an approaching hurricane, and identify 

potential airports to divert flights from the affected airports. 
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For hurricane evacuation, the results of our evacuation traffic analysis showed that 

the sensor locations from the same county and adjacent counties form the cluster, and the 

traffic volume at a sensor location can be predicted by the traffic volumes in the same county 

and adjacent counties. Our results revealed that the 25 sensor locations could be grouped into 

four clusters. Wake County and its neighboring counties are grouped as the largest cluster, 

adjacent counties in southeast N.C. as the second-largest cluster, the easternmost counties 

(Dare and Hyde) as a cluster, and Vance County as the last cluster. Predicting the traffic 

volume at a location needs to consider historical traffic volumes at the same location and the 

locations in the same cluster. Our results of decision making cues for hurricane evacuation 

showed that among the seven cues we tested, only one cue (wind speed) contributes to 

Evacuation Planners’ decision (i.e., whether to issue an evacuation order). The predictive 

models created in our studies can be used to manage hurricane evacuations, including proper 

traffic control, estimating emergency responders needed, and preparing enough evacuation 

supplies such as gas, water, food, and hotel rooms. These models and findings will help 

emergency response agencies deploy effective evacuation operations and improve the 

mobility of the people and evacuation resources during a hurricane. 
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APPENDIX A: Data for Hurricane Evacuation in North Carolina 

Table A.1: Data obtained from multiple sources for the judgment model 

Name of 
County 

No of 
Shelters 

Wind 
Speed Rainfall 

Households 
affected 

Flood 
Level (ft) 

Median 
Household 

Income 
Poverty 
Percent Evacuate 

Anson 1 45 4 74 24.39 33,228 25.1 0 

Beaufort 2 50 7.5 850 12.50 45,860 19 1 

Bertie 2 40 10.5 1025 16.67 34,127 24.4 0 

Bladen 4 39 12 2817 36.34 34,422 26.4 0 

Brunswick 3 67 7 784 18.98 47,000 13.8 0 

Carteret 2 60 6.5 49 8.48 52,000 12.3 1 

Columbus 5 59 11.5 5189 2.00 40,000 24.6 0 

Cumberland 6 60 13 14803 58.70 42,107 18.8 0 

Dare 0 75 6 1121 3.00 56,489 10.9 1 

Duplin 3 49 7 1322 19.92 39,146 21.3 0 

Durham 1 60 11.5 850 17.73 54,093 16.1 0 

Edgecombe 4 60 11.5 3139 36.15 35,000 23.9 1 

Franklin 0 45 8.41 13 23.18 50,000 15.3 0 

Gates 0 64 9 158 16.19 49,258 15.2 0 

Greene 1 50 9 579 24.18 38,010 23.7 0 

Harnett 1 57 7 1683 19.31 51,682 16.1 0 

Hyde 0 75 6 194 2.00 56,285 22.3 1 

Hertford 1 40 9 453 15.40 37,000 26.1 0 

Hoke 1 60 11.5 1786 12.84 45,829 19.5 0 

Johnston 3 50 11.5 1683 28.90 57,151 13.2 0 

Jones 1 50 6.5 226 18.46 34,005 21.5 0 

Lee 1 45 11.5 190 11.44 50,547 16.9 0 

Lenoir 1 51 9 3291 28.24 38,000 20.6 1 

Martin 1 50 9 213 11.60 35,080 22.5 0 

Montgomery 0 50 4 0 10.40 37,800 21.4 0 

Moore 1 55 5 343 8.91 56,678 11.4 0 

Nash 1 55 7 927 15.26 47,200 16.5 0 
New 
Hanover 

1 75 6 23 3.00 56,200 17.3 0 

Onslow 6 50 6.5 442 20.55 38,000 13.7 0 

Orange 1 45 6.5 850 16.25 61,130 12.8 0 

Pamlico 1 50 5 7569 2.00 46,762 18.5 0 

Pasquotank 1 64 8.5 476 16.19 45,400 17 0 

Pender 3 68 6 957 17.79 50,000 15 1 

Pitt 3 69 8 3303 24.46 50,000 21.5 1 

Richmond 0 50 6 23 17.60 37,000 24.9 0 

Robeson 5 67 11 18482 25.00 33,000 27.8 1 
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Table A.1: (cont’d) 

Name of 
County 

Sampson 

Scotland 

Vance 

Wake 

Wayne 

No of 
Shelters 

3 

0 

1 

1 

3 

Wind 
Speed 

60 

55 

55 

45 

50 

Rainfall 

12 

7 

5 

9 

6.5 

Households 
affected 

2236 

500 

850 

916 

6695 

Flood 
Level (ft) 

27.92 

15.47 

2.00 

5.47 

2.00 

Median 
Household 

Income 

38,835 

52,000 

32,733 

76,000 

45,000 

Poverty 
Percent 

19.6 

27.6 

24.2 

9.2 

20.6 

Evacuate 

0 

0 

0 

0 

1 

Wilson 1 52.5 10.5 721 2.00 43,456 22.3 0 
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1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Table A.2: Summary of evacuation traffic data in eastern North Carolina 

Sr.No File name District County Location Location ID Route 
A2702 1 Dare US 64 Hwy 280000002 64 

A3002 3 Duplin W NC 24 Hwy 0310000003 24 
A3003 3 Duplin E NC 24 Hwy 0310000002 24 
A5001 4 Johnston I-40 0510000001 40 
A5301 2 Lenoir Hwy 55 W 0540000001 55 
A6401 3 New Hanover Castle Hayne Rd 0650000001 117 
A6403 3 New Hanover Wrightsville Ave 0650000002 74 
A7101 3 Pender US Hwy 421 0710000002 421 
R0901 3 Brunswick Ocean Hwy W 0100000428 17 
R1401 1 Camden US 17 0150000003 17 
R2301 6 Columbus N US 701 Bypass 0240000676 701 
R2701 1 Dare NC 12 Hwy 280000004 12 
R5001 4 Johnston I-95 0510000002 95 
R5301 2 Lenoir Hwy 70 W 0540000002 70 
W2301 6 Columbus Andrew Jackson Hwy E 0240000001 74 
W4701 1 Hyde US 264 Hwy 0480000001 264 
W7002 3 Pender US hwy 421 0710000002 421 
A2501 6 Cumberland All American Exp 0260000001 1007 
A4201 6 Harnett E Cornelius Harnett Blvd 0430000001 421 
A5001 4 Johnston I-40 0510000001 40 
A6301 4 Nash US 264 E 0640000005 264 
A6302 4 Nash W NC 97 0640000003 97 
A9001 5 Vance S Carroll St 0910000001 1501 
A9501 4 Wayne US 117 Alternate 0960000001 117 
R3103 5 Durham I-40 E 0320000010 40 
R3201 4 Edgecombe US 64 East 0330000002 64 
R6301 4 Nash US 64 East 0640000006 64 
R7701 6 Robeson I-74 E 0780000002 74 
R9101 5 Wake US 70 Hwy E 0920000081 70 
R9102 5 Wake Capital Blvd 0920000082 401 
R9103 5 Wake I-40 EB 0920000013 40 
R9104 5 Wake I-40 EB 0920000014 40 
R9106 5 Wake 0920000020 440 
R9107 5 Wake I 540 EB 920000024 540 
R9108 5 Wake I 440 EB 0920000021 440 
R9111 5 Wake I 40 EB 0920000016_EB 40 
R9112 5 Wake I 40 EB 0920000017 40 
R9113 5 Wake I 40 EB 0920000018 40 
R9114 5 Wake I 540 EB 0920000025 540 
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APPENDIX B: Codes for Prediction Models of Hurricane Evacuation Traffic in 

Eastern North Carolina 

## Libraries required for analysis 
# importing libraries 
import pandas as pd 
import matplotlib.pyplot as plt 
import statsmodels.api as sm 
from scipy.stats import normaltest 
from scipy.stats import shapiro 
from scipy.stats import anderson 

# # Data for the analysis 
def DailyTraffic(TData, Date): 

df1 = TData[TData['DATE'] == Date] 

df2 = df1.drop(['DIST','DIR', 'DATE'], axis=1) 
df3 = df2.sort_index() 
df4 = df3[~df3.index.duplicated()] 
df5 = df4.T 

Hours = pd.Series(list(range(1,25)),index=df5.index) 
df5['Hour'] = Hours 
return df5 

# End of DailyTraffic 

# Function to add shifted traffic data to the dataset 
def addShiftTraffic(DataSet, OneSiteTraffic, periods = 4): 

for i in range(1, periods+1): 
ShiftedTraffic = OneSiteTraffic.shift(periods=i) 
ColumnSuffix = '_' +str(i) + 'HrBf' 
DataSet = DataSet.join(ShiftedTraffic, rsuffix=ColumnSuffix) 

return DataSet 

Folder = "C:/Users/shmhatre/Desktop/Spring_2020/CATM 
project_2020/TrafficEvacAnalysis/Sensor_Analysis/" 

Counties = pd.read_csv(Folder + "AdjacentCounty.csv", index_col="County") 
Counties['Sr.No'] = Counties.index 

SensorSite = pd.read_csv(Folder + "Consolidate Data.csv", index_col="SITE") 

D1 = pd.read_csv(Folder + "D1.csv",index_col='SITE') 
D2 = pd.read_csv(Folder + "D2.csv",index_col='SITE') 
D3 = pd.read_csv(Folder + "D3.csv",index_col='SITE') 
D4 = pd.read_csv(Folder + "D4.csv",index_col='SITE') 
D5 = pd.read_csv(Folder + "D5.csv",index_col='SITE') 
D6 = pd.read_csv(Folder + "D6.csv",index_col='SITE') 
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# Merge the traffic data from all files 
# Then seperate them into four datasets by directions 
RawData = pd.concat([D1,D2,D3,D4,D5,D6], sort=False) 
EBTraffic = RawData[RawData['DIR'] == 'EB'] 
WBTraffic = RawData[RawData['DIR'] == 'WB'] 
NBTraffic = RawData[RawData['DIR'] == 'NB'] 
SBTraffic = RawData[RawData['DIR'] == 'SB'] 

# Filter the evacuation data and re-organize the dataset 
Dates = ['9/5/2018', '9/6/2018', '9/7/2018', '9/8/2018', '9/9/2018'] 

WBframes = [0] * len(Dates) 
NBframes = [0] * len(Dates) 

for i in range(len(Dates)): 
WBframes[i] = DailyTraffic(WBTraffic, Dates[i]) 
NBframes[i] = DailyTraffic(NBTraffic, Dates[i]) 

WBTData = pd.concat(WBframes, keys=Dates, sort=False) 
NBTData = pd.concat(NBframes, keys=Dates, sort=False) 

EvacuationTraffic = WBTData.join(NBTData, how='outer',rsuffix='_NB') 

# Prepare the dataset for the prediction modeling 
# PredInput is the dataset for the prediction modeling 
AvailableSensors = list(EvacuationTraffic.columns) 
Sensor = "R9103" 

PredInput = EvacuationTraffic.loc[:,[Sensor,'Hour']] 

SiteTraffic = EvacuationTraffic[Sensor] 
PredInput = addShiftTraffic(PredInput, SiteTraffic) 

SensorCounty = SensorSite.loc[Sensor,'County'] 

for adjCounty in Counties.loc[SensorCounty]: 
adjSensors = SensorSite[SensorSite['County'] == adjCounty].index 

for adjSensor in adjSensors: 
if adjSensor == Sensor: 

continue 

print(adjSensor) 
available = AvailableSensors.count(adjSensor) 
if available == 0: 

print('Sensor ' + adjSensor + ' is misisng!') 
elif available == 1: 

adjTraffic = EvacuationTraffic[adjSensor] 
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PredInput = PredInput.join(adjTraffic) 
PredInput = addShiftTraffic(PredInput, adjTraffic) 
PredInput = PredInput.drop([adjSensor], axis=1) 

Df1 = PredInput.iloc[3:,] 
Df1 
Data = Df1.dropna(axis=1) 
X = Data.drop(['R9103','Hour'] ,axis=1) 
y = Data['R9103'] 

# Adding constant column of ones, mandatory for sm.OLS model 
X_1 = sm.add_constant(X) 

# Fitting sm.OLS model 
model = sm.OLS(y,X_1).fit() 

# Backward Elimination 
cols = list(X.columns) 
pmax = 1 
while (len(cols)>0): 

p= [] 
X_1 = X[cols] 
X_1 = sm.add_constant(X_1) 
model = sm.OLS(y,X_1).fit() 
p = pd.Series(model.pvalues.values[1:],index = cols) 
pmax = max(p) 
feature_with_p_max = p.idxmax() 
if(pmax>0.05): 

cols.remove(feature_with_p_max) 
else: 

break 
selected_features_BE = cols 
print(selected_features_BE) 

# Adding constant column of ones, mandatory for sm.OLS model 
X_1 = sm.add_constant(X) 

# Fitting sm.OLS model 
model = sm.OLS(y,X_1).fit() 

# model.pvalues 

X2 = sm.add_constant(X) 
model = sm.OLS(y, X2) 
result = model.fit() 
res = result.resid 
fig = sm.qqplot(res,fit=True,line ='45') 
h = plt.title('Normal QQ Plot ' +Sensor) 
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plt.savefig("C:/Users/shmhatre/Desktop/Spring_2020/CATM 
project_2020/TrafficEvacAnalysis/Informs_result/" + Sensor+'_qqplot.png',transparent = 
True, dpi= 1000, bbox_inches ='tight') 
plt.show() 

# outpout residual 
res 
res.to_excel("C:/Users/shmhatre/Desktop/Spring_2020/CATM 
project_2020/TrafficEvacAnalysis/Sensor_Analysis/" + "res" + Sensor + ".xlsx") 

# Shapiro-Wilk Test 
data = res 

# normality test 
stat, p = shapiro(data) 
print('Statistics=%.3f, p=%.3f' % (stat, p)) 

# interpret 
alpha = 0.05 
if p > alpha: 

print('Sample looks Gaussian (fail to reject H0)') 
else: 

print('Sample does not look Gaussian (reject H0)') 

# D'Agostino and Pearson's Test 
data = res 

# normality test 
stat, p = normaltest(data) 
print('Statistics=%.3f, p=%.3f' % (stat, p)) 

# interpret 
alpha = 0.05 
if p > alpha: 

print('Sample looks Gaussian (fail to reject H0)') 
else: 

print('Sample does not look Gaussian (reject H0)') 

# generate univariate observations 
data = res 

# normality test 
result = anderson(data) 
print('Statistic: %.3f' % result.statistic) 
p = 0 
for i in range(len(result.critical_values)): 

sl, cv = result.significance_level[i], result.critical_values[i] 
if result.statistic < result.critical_values[i]: 
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print('%.3f: %.3f, data looks normal (fail to reject H0)' % (sl, cv)) 
else: 

print('%.3f: %.3f, data does not look normal (reject H0)' % (sl, cv)) 

# Visualisation for Cook’s distance (CD) to identify the most influential observation in outlier detection 

# Instantiate and fit the visualizer 
# with ('9/5/2018', 'HR 9'),('9/6/2018', 'HR 8'),('9/8/2018', 'HR 19'),('9/8/2018', 'HR 22') dropping 
from yellowbrick.regressor import CooksDistance 
visualizer = CooksDistance() 
visualizer.fit(X, y) 
visualizer.show() 

# Adding constant column of ones, mandatory for sm.OLS model 
X_1 = sm.add_constant(X) 
# Fitting sm.OLS model 
model = sm.OLS(y,X_1).fit() 

infl = model.get_influence() 
sm_fr = infl.summary_frame() 
sm_fr 

sm_fr.to_excel("C:/Users/shmhatre/Desktop/Spring_2020/CATM 
project_2020/TrafficEvacAnalysis/Sensor_Analysis/" + "CD" + Sensor + ".xlsx") 

X.drop([('9/5/2018', 'HR 6'), ('9/5/2018', 'HR 7'),('9/6/2018', 'HR 6'),('9/6/2018', 'HR 7'), 
('9/6/2018', 'HR 17'), 

('9/7/2018', 'HR 6'),('9/7/2018', 'HR 7'),('9/8/2018', 'HR 19'),('9/8/2018', 'HR 20')],axis=0, 
inplace=True) 

y.drop([('9/5/2018', 'HR 6'), ('9/5/2018', 'HR 7'),('9/6/2018', 'HR 6'),('9/6/2018', 'HR 7'), 
('9/6/2018', 'HR 17'), 

('9/7/2018', 'HR 6'),('9/7/2018', 'HR 7'),('9/8/2018', 'HR 19'),('9/8/2018', 'HR 20')],axis=0, 
inplace=True) 

from yellowbrick.regressor import CooksDistance 
visualizer = CooksDistance() 
visualizer.fit(X, y) 
visualizer.show() 

#Adding constant column of ones, mandatory for sm.OLS model 
X_1 = sm.add_constant(X) 
#Fitting sm.OLS model 
model = sm.OLS(y,X_1).fit() 
#model.pvalues 

sm_fr.to_excel("C:/Users/shmhatre/Desktop/Spring_2020/CATM 
project_2020/TrafficEvacAnalysis/Sensor_Analysis/" + "7RS" + Sensor + ".xlsx") 
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X2 = sm.add_constant(X) 
model = sm.OLS(y, X2) 
result = model.fit() 
res = result.resid 
fig = sm.qqplot(res,fit=True,line ='45') 
#probplot = sm.ProbPlot(res) 
# fig = probplot.qqplot() 
h = plt.title('Normal QQ Plot 9RES ' +Sensor) 
plt.savefig("C:/Users/shmhatre/Desktop/Spring_2020/CATM 

project_2020/TrafficEvacAnalysis/Informs_result/" + 
Sensor+'_qqplot.png',transparent = True, dpi= 1000, bbox_inches ='tight') 

plt.show() 

# Shapiro-Wilk Test 

data = res 
# normality test 
stat, p = shapiro(data) 
print('Statistics=%.3f, p=%.3f' % (stat, p)) 
# interpret 
alpha = 0.05 
if p > alpha: 

print('Sample looks Gaussian (fail to reject H0)') 
else: 

print('Sample does not look Gaussian (reject H0)') 

# D'Agostino and Pearson's Test 
from scipy.stats import normaltest 
data = res 
# normality test 
stat, p = normaltest(data) 
print('Statistics=%.3f, p=%.3f' % (stat, p)) 
# interpret 
alpha = 0.05 
if p > alpha: 

print('Sample looks Gaussian (fail to reject H0)') 
else: 

print('Sample does not look Gaussian (reject H0)') 

# generate univariate observations 
data = res 
# normality test 
result = anderson(data) 
print('Statistic: %.3f' % result.statistic) 
p = 0 
for i in range(len(result.critical_values)): 
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sl, cv = result.significance_level[i], result.critical_values[i] 
if result.statistic < result.critical_values[i]: 

print('%.3f: %.3f, data looks normal (fail to reject H0)' % (sl, cv)) 
else: 

print('%.3f: %.3f, data does not look normal (reject H0)' % (sl, cv)) 

# After passing the normality check we accept the data and do the analysis for other sensors 

Real‐Time Traffic Control in an ITS System during an Emergency Evacuation 52 

https://print('%.3f
https://print('%.3f


 

  

  

 

APPENDIX C: Posters and Presentation Slides 
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