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EXECUTIVE SUMMARY 

In recent years natural disasters such as hurricanes, floods, and winter storms, have caused 

significant losses and disruptions to infrastructure, communities, and the economy. Effective 

preparation and quick response to natural disasters is very important for the mitigation of 

such losses and disruptions. As an important part of natural disaster preparation and 

response, evacuations often occur before or after a natural disaster. However, an effective 

evacuation involves complex planning, preparation, and operations. Moreover, diverse 

human evacuation behavior, such as staying or evacuating from home, taking public 

transportation or driving private vehicles, and different times and routes to leave from the 

affected area, complicates the management of mass evacuations.   

In the second phase of this CATM project, we proposed and tested the quantitative 

methods to quantify a hurricane disruption to the United States (US) airport network, to 

identify feasible airports to reroute flights from a disrupted airport, and to recommend 

personalized multimodal options for passengers stranded due to a hurricane. Our results 

showed that the proposed quantitative methods can identify the airports to be disrupted by an 

approaching hurricane, potential airports for rerouting flights from the disrupted airports, and 

road transportation services to be utilized for rescheduling passengers. Our experimental 

results revealed that hurricane impact distance and forecast track affect identifying potential 

disruptors, their disruptees and potential airports to reroute to from a disrupted airport. In 

addition, our results implied that it is advisable to hire buses to transfer passengers when a 

disruptive event is anticipated to occur at a particular airport. 

For hurricane evacuation, we investigated significant cues for Evacuation Planners’ 

decisions during a hurricane evacuation, built the Rule-based Lens Model (RLM) to analyze 

decision-making behavior during an emergency evacuation in an incomplete information 

environment, and developed an agent-based hurricane evacuation simulation model to 

examine evacuation traffic volumes under different scenarios. Our analysis results showed 

that only one (wind speed) of the seven cues tested contributes to Evacuation Planners’ 

decision. Our experimental results demonstrated that Monte-Carlo simulation was 66% 

accurate in simulating ecological data, and the supervised machine learning (SML) 

algorithms are capable of modeling both ecology and judgment policy. Our simulation results 
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showed that optimized individual evacuation plans considering traffic conditions can reduce 

the average evacuation trip duration by about 10% when compared to taking the shortest 

path, and the percentage of families choosing shelter-in-place slightly affects evacuation 

traffic and travel time.  

The proposed graph theoretical and rerouting methods can support airports and 

airlines administrators to recognize the airports that might be affected beforehand, which in 

turn can aid in planning for a disruption. The planning for rescheduling of airline passengers 

based on a hurricane forecast path may alleviate the problem of passenger disruption. The 

RLM combining the ecological and judgment models can quantify evacuee decision making 

when limited information is available for data-supported models, which can support disaster 

management. The developed hurricane evacuation simulation model can estimate evacuation 

traffic volumes and average travel time given a hurricane evacuation scenario, which could 

provide insights for hurricane evacuation planning and management. This simulation model 

can be used as a tool to support hurricane evacuation planning by comparing different traffic 

control policies under different hurricane evacuation scenarios. 

Our results of the second phase of this CATM project have been published as one 

peer-reviewed conference paper and presented as posters and oral presentations at national 

professional conferences and regional transportation symposiums. One journal paper has 

been submitted. In addition, four graduate students (including two female students) and one 

African American undergraduate student have been involved in this CATM project. Two of 

the four graduate students working on this project have graduated with the dissertation 

research in Transportation. The participation of these students can contribute to the diversity 

of the US transportation workforce in the future. 
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DESCRIPTION OF PROBLEM 

As part of natural disaster preparation and response, evacuations often occur before or after 

natural disasters such as hurricanes and earthquakes. For example, nearly seven million 

Florida residents evacuated from the state during Hurricane Irma (2017), making it the 

largest hurricane evacuation in the US and causing significant traffic congestion and fuel 

shortage in Florida. Hurricane Irma also caused significant disruption to air transportation in 

Florida. Nearly 4000 flights were cancelled according to one report by Flight Aware. In 

addition to canceling and diverting flights, airlines also added flights to get passengers out of 

the storm’s path and moved their planes (some of which cost $100 million) to other safe 

cities. United Airlines, Delta, and American added flights in advance of the hurricane to help 

get stranded passengers out of the storm’s path. The ripple effects of the storm were felt in 

other cities like Atlanta, where Delta canceled nearly 1000 flights resulting in many 

passengers stranded at the airport. 

During Hurricane Florence (2018), evacuation orders were issued to 25 counties in 

North Carolina and South Carolina, causing approximately one million Carolinians to 

evacuate from their homes. However, some residents chose shelter-in-place despite 

mandatory evacuation issued in their counties. Traffic congestion and fuel shortages occurred 

in the eastern coastal areas in North Carolina even though the state government prepared for 

evacuation by closing public schools and issuing evacuation orders three days before 

landfall, arranging evacuation paths and providing evacuation guide. A worse issue was that 

some people could not evacuate due to the closure of a bridge when they chose to evacuate 

later. Therefore, it is obvious that effective and proper traffic control is crucial during a mass 

evacuation. 

Recently, information and communication technologies (ICT) have been incorporated 

in the NC transportation infrastructure to build intelligent transportation systems (ITSs), 

which include smart actuated signals, dynamic message signs, the roadway weather 

information system, reversible lane systems, and the traveler information management 

system. These ITSs provide us with opportunities to improve the effectiveness and efficiency 

of emergency response. For example, smart traffic signals and the traffic coordination 

network enable emergency vehicles to respond to incidents rapidly. During natural disasters, 
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ITSs can also play an important role in mass emergency evacuations. In this CATM project, 

we aimed to develop and integrate ecological models for human evacuation behavior 

prediction and hurricane evacuation traffic control in intelligent transportation infrastructure. 

The ultimate goal is to create a human-centered intelligent traffic control recommendation 

system to support mass evacuations. The research questions of the second phase of our 

CATM project are: 

 What are the differences in network structure among the US airlines, and to 

what extent are these differences correlated with the consequences of severe 

weather disruptions to airline flight schedules? 

 How should airline carriers recommend personalized, multi-modal options for 

passengers whose flights are cancelled due to severe weather? We consider 

various transportation modes to get the passengers to their destinations. 

 How do human make decisions to evacuate on emergency? 

 Can the Monte Carlo simulation be used to replace the unavailable ecological 

environment? 

 Can machine learning algorithms outperform traditional logistic regression 

models to evaluate and predict human judgment? 

 How does the percentage of families choosing to shelter-in-place affect 

evacuation traffic and the average evacuation travel time? 

 How can optimized individual evacuation plans affect evacuation traffic and 

individuals’ evacuation travel time? 
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METHODOLOGY AND RESULTS 

In this CATM project, we conducted studies addressing hurricane evacuation and weather-

related flights recovery. Before we conducted these studies, we investigated the components 

of North Carolina’s Intelligent Transportation System (ITS) and identified the potential 

actions that are supported by the smart components in the current NC road transportation 

system that can be used to improve traffic control during a hurricane evacuation. We also 

requested and collected historical data related to hurricane evacuations from different sources 

to support our CATM studies. The methodology and results of five studies in Phase 2 of this 

CATM project are described in detail in the following subsections.  

Study 1 – A Graph Theoretical Approach Integrating Geospatial Information to 

Analyze Airport Network Disruptions  

1.1 Research Problem 

Air transportation is one of those complex systems that needs to function across multiple 

organizations and departments. Besides its intricate functionality, it is often subjected to 

different types of disruptions such as aircraft technical issues, human planned attacks, airport 

damage, airport congestion, industrial strikes, and severe weather conditions among others. 

These disruptions influence the operational stability of the airport network system [1]. 

Moreover, weather disruptions account for over 50% of the delays in the US National 

Airspace (NAS) [2]. In this study, we analyzed weather related disruptions on an airport 

network. 

Weather-related disruptions are a common occurrence in an air transportation system. 

Due to their stochastic nature, they can be hard to predict accurately, even though we have 

forecasting tools [3-5]. It is not always possible to eliminate the source of disruptions, 

especially if they are weather-related events such as hurricanes and tropical storms. However, 

to mitigate the impact of weather-related disruptions, there might be a necessity to develop 

robust planning and recovery mechanism tools or methods [6]. Nonetheless, to either plan for 

a hurricane disruption or to provide opportunities for recovery when disturbances cannot be 

avoided, locating airports that can be impacted is essential. Besides, there may be airports 

that, in turn, can be affected due to these originally impacted ones. Therefore, capturing these 
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two types of airports and understanding their roles beforehand in either an overall airport or a 

single airline network can help us efficiently plan, reschedule, and recover both flights and 

passengers before, during, and after a hurricane disruption. 

Generally, during hurricanes and tropical storms, a forecast is issued for a three-day 

or five-day period. Utilizing this time frame, we developed a graph theoretical approach 

using network theory to classify airports ahead of a hurricane from two different 

perspectives: “Disruptor” and “Disruptee.” Disruptor and Disruptee is a pair of airports 

where disruptor is a hurricane affected airport. Whereas, disruptee is an airport impacted by a 

disruptor. The meaning of Disruptor and Disruptee is explained in detail in the following 

sections. Making use of this classification, we further developed a method to discover 

airports for rerouting to minimize passenger travel disruption, delays, and cancellations 

during a hurricane. An attempt in minimizing any of these aforementioned events can also be 

of great economic value as it can decrease different types of costs. However, during a 

hurricane there are certain factors that vary per day, time, and location: one is forecast track 

of a hurricane issued by the National Hurricane Center (NHC); second is impact of a 

hurricane, i.e., effect of a hurricane can differ based on time and location due to change in its 

path and intensity as days progress. Therefore, it is crucial to analyze the influence of these 

two factors on our theoretical approach’s functionality. From our results, we are able to 

identify potential disruptors and their respective disruptees in the US airport network for a 

hurricane scenario. Moreover, we provided alternate airport choices to reroute from the 

disrupted airports. We are also able to deduce that the geographical element of the theoretical 

approach influence identification of disrupted airports and their rerouting choices. In 

addition, we provided analysis to identify disruptees and their rerouting choices for different 

hurricane impact distances and forecast track. 

The goal of developing the graph theoretical approach is to minimize hurricane-

related passenger disruption. The specific research objectives are: 

 to understand the ability of airline passengers to get rerouted from a hurricane 

impacted airport; 

 to understand the effect of a change in the forecast track of a hurricane on 

identifying disruptors, disruptees, and rerouting airport choices; 
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 to understand the effect of a change in the hurricane impact distance on 

identifying disruptees and discovering rerouting choices for an airport classified as a 

disruptor. 

1.2 Methodology 

As a part of our approach, we developed two mathematical equations to classify an airport as 

either a disruptor or disruptee. In this study, we also proposed an approach to rerouting from 

hurricane affected airports. In this section, “Disruptor” and “Disruptee” are defined, and the 

two equations to classify an airport are presented with the assumptions to drive the two 

equations. After that, the approach to rerouting passengers from affected airports is 

presented. 

1.2.1 Disruptor equation 

An airport is defined as a disruptor if it gets affected during an event and impacts flight 

routes connecting from and through this airport along with other flight routes. For a hurricane 

disruption, we considered the following three different scenarios to classify an airport as a 

disruptor. 

 The first scenario captures all immediate connections from an airport. 

 The second scenario captures flight routes for which an airport serves as an 

intermediate connection. 

 The third scenario considers the geospatial element, i.e., flight routes that are 

supposed to go through a disrupted airport zone. 

We captured these three scenarios by developing an equation that quantifies the 

extent to which airports in a network can be disruptors. The disruptor equation consists of 

three components: the immediate, the intermediate, and the geospatial components. The 

immediate component captures all immediate connections from an airport, whereas the 

intermediate component captures flight routes for which an airport is an intermediate 

connection. The geospatial element captures flight routes that lie within a disrupted airport 

zone. The higher value of the disruptor equation indicates a highly disrupted airport. To 

develop the disruptor equation, we use the degree centrality measure for immediate 
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connection scenarios, as well as simple paths for intermediate and geospatial scenarios. For 

the details of driving the disruptor equation, please refer to Meda’s dissertation [7]. 

1.2.2 Disruptee equation 

A disruptee is an airport that is impacted by a disrupted airport, i.e., disruptor. To classify an 

airport as a disruptee, we explored the three scenarios discussed in section 1.2.1 in a 

slightly different way. We used simple paths of length up to three to capture these three 

scenarios. In this study, we developed an equation to quantify the extent to which airports in 

a network can be disruptees when a particular airport serves as a disruptor. The effect on a 

disruptee can be either due to disruptor’s importance as a direct or intermediate connection 

for flights of the disruptee airport, or due to the geographical location of the disruptor. Thus, 

the disruptee equation consists of three components: the destination component, the transition 

component, and the geographical component. The destination component captures the 

number of flight paths originating from an airport that are affected due to a disruptor airport 

being their final destination. The transition component captures flight routes from an airport 

for which disruptor airports act as an intermediate connection. The geographical component 

estimates the flight paths from an airport that fall under the disrupted zone of the airport. For 

the details of driving the disruptee equation, please refer to Meda’s dissertation [7]. 

1.3 Experimental Design 

The US airports network data and the hurricane forecast data are required in the experiment. 

Figure 1.1 illustrates the data extraction process for the US airports network data. We 

referred to an open and online source “openflights.org” to obtain worldwide airlines routes 

data [8]. This dataset consists of 67663 routes between 3321 airports on 548 airlines 

spanning worldwide as of June 2014. Since we want to restrict these route data to the US 

airports, we extracted calendar year 2018 enplanements data from the Federal Aviation 

Administration (FAA) website. The routes data is further filtered using commercial and 

primary service airports information present in the enplanements dataset [9]. The routes data 

filtering resulted in 2465 routes between 354 US airports on 60 airlines. Using this data, an 
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undirected airport network is constructed with airports as nodes and direct flights between 

each pair of airports as edges. 

Figure 1.1: Data extraction process for the US airport network. 

During every hurricane, NHC issues hurricane forecasts every six hours. This forecast 

is usually for an entire three-day or five-day path of a storm or cyclone and it utilizes 2/3 

probability circle radii, which are based on the historical forecast records over five years. The 

circle radii at different forecast hours are set in a way such that two-thirds of historical 

official forecast errors over a five-year sample lie within the circle. This also means that the 

probability of a cyclone or storm to fall within the cone of uncertainty is 67%. Table 1.1 

shows the radii of NHC and Central Pacific Hurricane Center (CPHC) cone circles for 2020, 

which are based on forecast errors from years 2015-2019. The hurricane forecast data is 

available in text file format and can be retrieved from the archives of NHC. Based on time of 

forecast and the radii of NHC and CPHC cone circles for the year 2020, we can estimate 
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forecast period and match them with respective cone circle radius (both in nautical miles and 

miles). 

Table 1.1: Radii of NHC and CPHC cone circles for the year 2020 

Forecast period (hours) Atlantic basin (NM) EN Pacific basin (NM) CN Pacific basin (NM) 

12
24
36
48
60
72
96 

120 

26
 41
 55
 69
 86
 103 

151 
196 

25
 38
 51
 65
 78

91
115 
138 

34 
49 
66 
81 
95 

 120 
137 
156 

Note: EN stands for eastern north, CN for central north, and NM for nautical miles. 

In the experiment, we selected Hurricane Matthew 2016 and extracted its forecast 

data from NHC archives. Hurricane Matthew 2016 had its impact on the US during the 

period October 7th, 2016 to October 9th, 2016. We examined the forecast path and data three 

days ahead of this time period, i.e., starting from October 4th, 2016. Since this hurricane 

occurred in the Atlantic basin, NHC cone radii for year 2020 pertaining to this basin were 

used. For any airport that lies within a hurricane forecast cone radius, it is necessary to 

identify hurricane impact distance to compute disruptor and disruptee equation values. 

Therefore, in this study, we assumed NHC cone radius as a hurricane impact distance for an 

airport that lies within a forecast specific radius. 

1.4 Results and Discussion 

In the experiment, the disruptor equation values for different hurricane impact distances were 

computed at NHC’s 2020 cone radii of the Atlantic basin. In Figure 1.2, the weights for each 

component of the equation show that the intermediate component plays a vital role to classify 

an airport as a disruptor followed by the immediate and the geospatial components. Table 1.2 

shows the 20 airports with high disruptor equation values for different hurricane impact 

distances. The results in the table reveal that Chicago O'Hare airport (ORD) is the top 

disruptor irrespective of the hurricane impact distance. It is accompanied by Denver airport 
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(DEN) and Atlanta Hartsfield-Jackson airport (ATL). Moreover, most of the top 20 

disruptors are common across each distance. Further, to understand the significance of each 

airport’s disruptor equation value, we classify all airports values into three categories: higher 

risk, moderate risk, and lower risk. Table 1.3 shows the ranges of the disruptor equation 

values for three risk categories at each hurricane impact distance (i.e., cone radius). The 

lower end for higher risk category at each distance starts at a value greater than 0.13768; for 

medium risk category at a value greater than 0.06922. Thus, based on the forecast path of a 

hurricane and three categories of disruptor values, an airport can be classified as a disruptor.  

Figure 1.2: Weights for each component in the disruptor equation for different distances 

(NHC’s 2020 Cone Radii). 
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Table 1.2: 20 airports with high disruptor equation values for different distances 

29.926 
miles 

47.191 
miles 

63.305 
miles 

79.419 
miles 

118.553 
miles 

173.801 
miles 

225.596 
miles 

ORD ORD ORD ORD ORD ORD ORD 
ATL ATL ATL ATL DEN ATL ATL 
DEN DEN DEN DEN ATL DEN DEN 
DFW DFW DFW DFW DFW DFW DFW 
MSP MSP MSP MSP MSP MSP MSP 
LAS LAS LAS LAS LAS DTW DTW 
DTW DTW DTW DTW DTW LAS CLT 
CLT CLT CLT CLT CLT CLT LAS 
SLC SLC SLC SLC SLC SLC IAH 
IAH IAH IAH IAH IAH IAH SLC 
PHL PHL PHL PHL PHL PHL PHL 
SEA SEA SEA SEA SEA SEA SEA 
LAX LAX LAX LAX LAX LAX LAX 
DCA DCA DCA DCA DCA DCA DCA 
IAD IAD IAD IAD IAD IAD IAD 
PHX PHX BOS BOS PHX BOS BOS 
BOS BOS PHX PHX BOS PHX PHX 
MCO MCO MCO MCO MCO MCO EWR 
EWR EWR EWR EWR EWR EWR MCO 
MDW SFO SFO SFO SFO SFO SFO 

Table 1.3: Ranges for three risk categories of the disruptor equation values 

Distance Lower Moderate Higher 
(in Lower Upper Lower Upper Lower Upper 

miles) end end end end end end 

29.926 0.00076 0.06922 0.06922 0.13768 0.13768 0.20614 
47.191 0.00077 0.07069 0.07069 0.14060 0.14060 0.21051 
63.305 0.00078 0.07147 0.07147 0.14217 0.14217 0.21287 
79.419 0.00078 0.07195 0.07195 0.14311 0.14311 0.21428 
118.553 0.00079 0.07350 0.07350 0.14621 0.14621 0.21892 
173.801 0.00109 0.07528 0.07528 0.14947 0.14947 0.22366 
225.596 0.00131 0.07638 0.07638 0.15145 0.15145 0.22653 

In the experiment, we examined the effect of the hurricane impact distance, hurricane 

forecast track, and rerouting choices for the impacted airports. Our results revealed that 

change in hurricane impact distance and forecast track impact recognizing potential 

disruptors and in turn their disruptees. In addition, this affects identifying potential airports to 
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reroute to from a disrupted airport. This may result in inefficient planning/rescheduling to 

handle disruption due to a hurricane. For the details of the experimental results and analyses, 

please refer to Meda’s dissertation [7]. 

In the experiment, we made certain assumptions regarding knowing the data of single 

and multiple flight itineraries. In reality, this may not always be possible to obtain this 

segregated passenger itinerary data, and one of the future areas of research is to consider this 

aspect and refine the methods for classification of airports as disruptors and disruptees. We 

also assumed that passengers opt for flights that have a maximum of two connections. 

Nevertheless, this may not be the case every time as passengers can opt for a flight with more 

than two connections. Furthermore, the disruptor equation values for airports in the US 

airport network are smaller and none of them are close enough to one. One of the reasons for 

this could be normalization factors, which could be further explored in the future. 

Additionally, identifying the most important group of airports that might be affected during a 

hurricane is another interesting area to investigate as airports present in one region might be 

affected the most during a disruption than the ones that are present in a different area. 

Study 2 – Multimodal Approach for Rescheduling Airline Passengers 

2.1 Research Problem 

The passengers play a major role during a disruption and should be at the core of the air 

transportation system [10,11]. Disruptions can cause loss both financially and in terms of 

passenger good will to airlines. However, the availability of resources on existing flights to 

reschedule passengers may not be sufficient. To ensure passengers reach their destinations 

safely, it may be necessary to explore the usage of alternative sources of transportation. 

There is limited research that has explored multimodal resources for disruption recovery.  

The focus of this work is to design and understand the extent to which multimodal 

rescheduling of airline passengers during a predicted hurricane disruption can alleviate 

passenger inconvenience. The two primary aims of this study are (1) to develop a multi-

commodity network flow (MCNF) model for multimodal rescheduling of airline passengers, 

and (2) to test the proposed model and obtain managerial insights for rescheduling during a 

hurricane disruption. In doing so, we utilized certain network theory concepts and 

Multi‐Scale Models for Transporation Systems under Emergency 13 



 

               

 

 

 

 

 

 

  

 

 

 

 

 

incorporated some of the methods from our graph theoretical approach study. As a part of our 

second aim, we examined our model for different airline network topologies. Our results 

indicated that network topologies of airlines may affect multimodal rescheduling. We also 

observed that different modes of transportation can be utilized in multimodal rescheduling of 

airline passengers. 

2.2 Methodology 

When a disruption occurs at an airport, the general goal is to reschedule all the affected 

outgoing passengers that may get affected to their respective destinations. Hence, for 

multimodal rescheduling, we considered two other sources of transportation apart from 

scheduled flights (S: source 1). They were spare aircrafts (SA: source 2) for initiating a new 

flight service and charter buses (B: source 3) for road transportation. In this study, we did not 

consider rail as an alternative means for re-accommodating passengers because the rail 

system in the US does not have access to a majority of the important airports. In one of the 

multimodal research studies, it was reported that some of the airlines found it more flexible 

to hire buses using contacts [12,13]. For each source of transportation, the number and set of 

arcs varied and we made the following assumptions in setting up the network for 

rescheduling. 

 We assumed the airport network constructed based on steady state flow data as a 

scheduled flights network. 

 For road transportation service, we identified the rerouting airports from a 

disrupted airport were within a certain distance from source and destination 

airports. These were included as first mile options, and we added a directed arc 

in the road transportation network from the disrupted airport to each one of these 

rerouting airports. 

 Likewise, there may be close airports to destinations within a certain radius to 

where passengers could fly and then travel by road. We included these last mile 

possibilities in the road transportation network and added directed arcs to the 

respective destinations from these rerouting airports. 

 We set up network for initiating a new flight service in such a way that we 
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added directed arcs where scheduled flights and road transportation service arcs 

existed. This is because we assumed that it was difficult to initiate a new flight 

service where there was no existing flight route. Moreover, we added arcs from 

the origin to every other airport present in the network. This provided an option 

to transfer passengers to any airport in the network from the disrupted airport 

using a new flight service when there was no other possible way for 

rescheduling. 

An example of a multi-commodity network is shown in Figure 2.1. 

Figure 2.1: An example of a multi-commodity network. 

2.3 Results and Discussion 

Figure 2.2 presents the distribution of rescheduled passengers using multi-mode vs single-

mode transportation. The multi-mode is a combination of usage of air and road transportation 

services for rescheduling disrupted passengers. There are different possibilities through 

which multi-mode rescheduling can be achieved. These include: by air followed by road 

(AR); by road followed by air (RA); by air followed by road and then by air (ARA); and by 
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road followed by air and then by road (RAR). Whereas, the single-mode rescheduling 

includes either road (R) or air (A) transportation. However, the air transportation can be a 

combination of scheduled flights and spare aircrafts utilization. We observed that first mile 

and last mile options can be activated at every scenario except for base case. This implies 

that alternate sources of transportation (especially road transportation) are utilized in 

rescheduling disrupted passengers. Apart from air transportation, RA and RAR are the most 

used multi-mode rescheduling options for the toy network example. 

In this study, we tested the proposed MCNF model on a simulated network and four 

real-world carrier networks. Our results show that for both simulated and carrier networks, 

road transportation is utilized for rescheduling passengers when such option is available. This 

indicates that when a disruptive event is anticipated to occur at a particular airport, it is 

advisable to hire buses to transfer passengers. Figure 2.3 shows the average number of 

passengers that may have to travel using multi-mode and single-mode. The results in the 

figure show that for three of the four carrier networks (JetBlue, Frontier and Spirit), more 

than 80% of passengers get rescheduled with single-mode. The single-mode is traveling by 

either air or road transportation, whereas the multi-mode rescheduling utilizes both air and 

road transportation. However, traveling by air may comprise usage of combination of 

scheduled and new flights. The spare aircrafts are utilized in rescheduling for certain changes 

in available capacity and increases in number of affected passengers. Our analysis on the four 

carriers shows that the airports in northeastern region of the US may play a major role as 

connections for multimodal rescheduling. Some of these airports serve as either operating 

bases or focus cities for the airlines. For the details of the analyses, please refer to Meda’s 

dissertation [7]. 

We also proposed a utility function to estimate the passengers’ satisfaction. Figure 2.4 

displays the average passenger satisfaction utility for the four carrier networks. The results in 

the figure show that Southwest Airline passengers may experience more inconvenience when 

compared to its competitors. Moreover, the comparison of the average rescheduling cost in 

Figure 2.5 shows that the cost for Southwest Airline passenger rescheduling is higher than 

the other three carriers. The airport network topology can be the reasons for these findings. 

Multi‐Scale Models for Transporation Systems under Emergency 16 



 

               

 

    

     

    

 

However, this needs to be validated further by conducting more experiments with different 

airports as disruptors. 

(a) No change in demand  (b) 20% increase in demand 

(c) 40% increase in demand (d) 60% increase in demand 

(e) 80% increase in demand (f) 100% increase in demand 

Figure 2.2: Distribution of passengers onto different means of transportation  

with increase in demand and change in capacity. 
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(a) (b) 

(c) (d) 

Figure 2.3: Single-mode and multi-mode operations for four airline networks. 
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Figure 2.4: Average passenger satisfaction utility for four airline networks. 

Figure 2.5: Average multi-modal rescheduling costs for four airline networks. 
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Study 3 – A Simulation Study of Hurricane Evacuations in Eastern North Carolina  

3.1 Research Problem 

Over the last decade, the number and intensity of hurricanes affecting the US have increased 

notably, causing significant disruptions and damages to the communities and infrastructure in 

the Atlantic and Gulf coasts. For example, recent major hurricanes such as Harvey (2017), 

Irma (2017), Florence (2018), Michael (2018), Dorian (2019), Laura (2020), Zeta (2020), and 

Ida (2021) caused many casualties and damaged thousands of houses in the US, and 

significantly disrupted critical infrastructures in the coastal areas. These hurricanes also 

caused mass emergency evacuations, in which millions of people traveled from the affected 

areas to safe locations before landfall. The issues, such as severe traffic congestion and fuel 

shortage, occurred during the recent mass hurricane evacuations bringing the public attention 

to the challenges of managing an effective hurricane evacuation. 

Over the years, government agencies have guided millions of people for hurricane 

evacuations through road transportation systems and tried many policies to improve 

hurricane evacuation management. Meanwhile, researchers have proposed policies, models 

and tools to support hurricane evacuation management [14-16]. However, the issues occurred 

during the recent hurricane evacuations revealed that better traffic control and better resource 

and supply preparation are very important for an effective mass evacuation. To identify better 

traffic control policies and predict resources needed during a hurricane evacuation, the first 

step is to estimate the evacuation traffic volume and pattern. To meet this need, in this study, 

we developed a hurricane evacuation simulation model to estimate the traffic volume and the 

average trip duration under an evacuation scenario. Using the hurricane evacuation 

simulation model developed, we investigated the impact of the percentage of families 

choosing shelter-in-place and optimized individual evacuation plans on evacuation traffic and 

the average evacuation travel time. 

3.2 Methodology 

3.2.1 Assumptions for the hurricane evacuation simulation model 

In North Carolina (NC), when an approaching hurricane is forecasted, the disaster 

management agency activates and then coordinates all hurricane emergency preparation and 
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response activities. One of the critical activities is to prepare and manage an effective 

evacuation in the potentially affected region. In response to an approaching hurricane, the 

NC governor issues mandatory or voluntary evacuation orders to the potentially affected 

counties two or three days before the forecasted landfall. The NC government agencies 

provide evacuation guides, recommend evacuation routes in the evacuation zone, deploy 

more emergency response resources along the recommended evacuation routes, and open 

shelters as needed to accommodate some residents evacuating from their homes. Usually, the 

NC government does not provide public transportation services for hurricane evacuation.  

A majority of NC residents in the affected region choose to evacuate from the region 

before landfall. They may follow the recommended evacuation routes or choose their own 

evacuation routes based on the online real-time traffic information. However, some residents 

choose shelter-in-place despite mandatory evacuation in their counties. As most families 

choose staying or evacuating together [16], in the hurricane evacuation simulation model, a 

family is assumed to evacuate together by one vehicle or stay home together. The model 

simulates individual vehicles traveling through the highway transportation system to 

evacuate from the evacuation zone in eastern NC. Figure 3.1 shows the evacuation zone in 

eastern NC, which includes 35 NC counties affected by many past major hurricanes, and the 

highways in the zone usually used for hurricane evacuation [17]. During the period of a 

hurricane evacuation (usually 72 hours before landfall), regular traffic volumes gradually 

decrease. Thus, we assumed a three-day hurricane evacuation period in this study. During the 

three-day evacuation period, a constant percentage of road capacity is assumed for 

evacuation traffic on each day, but the percentage of road capacity for evacuation traffic 

increases from one day to the next. 

3.2.2 Simulation model 

An open-source agent-based transport simulation (MATSim) framework [18] was used to 

develop the hurricane evacuation simulation model that captures the trips of individual 

evacuation vehicles given an evacuation scenario. The MATSim-based simulation model 

consists of three main modules: population and departure generation module, network 
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generation module, and scenario generation module. Figure 3.2 illustrates the relationship 

among the three modules and the steps in each module.  

Figure 3.1: Evacuation zone and routes for evacuation in eastern North Carolina [17]. 

Figure 3.2: Procedure to build the MATSim-based hurricane evacuation simulation model  
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In the MATSim platform, agents represent individual evacuees (persons or vehicles), 

and the population contains all agents. Each agent has a list of evacuation plans, and each 

plan consists of a list of activities and legs that describe the planned actions in the plan. The 

main activities include pre-evacuation, post-evacuation, and routing activities such as 

departure, entering a link, leaving from a link, arrival, and so on. Each activity is performed 

on a specific links, and associated with an end time or a duration. A leg describes how to 

travel from one location to the next. Each leg is assigned a transport mode, a route (i.e., a 

sequence of links), and an expected travel time. Each evacuation plan is associated with a 

score, which is calculated and updated after each simulation iteration based on the results of 

the mobility simulation. Each agent selects one evacuation plan by comparing the scores of 

its plans, and all selected evacuation plans are executed by the mobility simulation in the next 

iteration. Over the simulation iterations, agents keep improving their evacuation plans by 

selecting a plan with a better score or creating new plans more responsive to the change in 

traffic pattern. 

The MATSim platform includes three built-in options (Dirac-delta, normal, and log-

normal) to generate agents’ departure times [18]. One of the three built-in options can usually 

capture the distribution of departure times in a short-notice or no-notice emergency 

evacuation, such as a building or city evacuation due to a local disaster. However, none of 

the three built-in options can properly generate agents’ departure times during a hurricane 

evacuation. During a major hurricane, the residents in the affected region usually evacuate 

from the region within 12–72 hours before landfall. More residents choose to evacuate during 

the daytime than the nighttime, and some residents choose staying home instead of 

evacuating from the region. To capture the distribution of departure times during a hurricane 

evacuation, we modified the population and departure generation module in the MATSim 

platform by adding the new functions that generate departure times equally distributed with a 

higher departure rate during the daytime and a lower rate during the nighttime. The functions 

also enable us to assign the percentage of agents choosing to stay. 

The network in the simulation model represents the road network through which 

evacuees (or agents) travel to safe locations. The network consists of nodes and links. Nodes 

represent locations (or points) separating roads into segments, while directional links 
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represent road segments. Each link is associated with attributes such as length, capacity, free 

flow speed, the number of lanes, and so on. The network generation module extracts the 

highway network in the NC evacuation zone from the NC map available at Geofabrik 

Downloads [19], and saves the network in OpenStreetMap (OSM) format as one of the inputs 

to the scenario generation module.  

In this study, MATSim Evacuation-GUI [18] was used to create a simulation scenario 

and evacuate the simulation model. To create a simulation scenario, the OSM-format 

network is loaded first, and then the evacuation area and the population locations are 

indicated on the network using polygons. After that, the population sizes are loaded and 

attached to the corresponding locations. Finally, the simulation scenario needs a specific 

traffic type, a reasonable sample size, a departure time distribution selected, and a directory 

to store the scenario input files and simulation output files. The input files generated for the 

simulation scenario are loaded to the MATSim simulation engine, which runs the simulation 

model for a given number of iterations.   

3.2.3 Simulation outputs 

The MATSim platform reports the cumulative number of agents evacuated, en-route agents 

and arrivals per time interval, and the average trip duration for each iteration. These 

performance metrics can be used to compare traffic volumes and travel time under different 

evacuation scenarios. The utilization of links is recorded every ten iterations, which can be 

used to estimate traffic volumes and pattern and identify the major evacuation routes. 

3.3 Case Study and Results 

3.3.1 Study area and scenarios 

In the case study, the MATSim-based hurricane evacuation simulation model was populated 

using the highway transportation system in eastern NC, and tested using the Hurricane 

Florence evacuation in NC. Figure 3.3 shows the highway network for the evacuation in the 

study area, which includes interstate highways, US routes and NC routes in the NC 

evacuation zone. During Hurricane Florence, evacuation orders were issued to the 16 NC 

counties (shown in Table 3.1) three days before landfall. Figure 3.4 illustrates the evacuation 
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area and the distribution of potential vehicles evacuating from the 16 counties, and Table 3.1 

presents the country seats, the populations and the estimated numbers of families in the 16 

counties. The number of families was estimated based on the average NC family size of 2.98 

[20]. The total number of vehicles that may evacuate from a county equals the number of 

families in the county because of the assumption that a family evacuates together by one 

vehicle. 

Figure 3.3: Highway network for evacuation 

Figure 3.4: Evacuation area and the distribution of potential vehicles evacuating  

from the 16 North Carolina counties 
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During Hurricane Florence, most NC families in the affected region chose to evacuate 

before landfall. However, some families chose shelter-in-place. Therefore, in the case study, 

we examined two scenarios representing two percentages (5% and 10%) of families choosing 

shelter-in-place. The departure time distribution and the road capacity for evacuation traffic 

are assumed to be the same in both scenarios. Table 3.2 summarizes the settings for the two 

scenarios. Each scenario was evaluated three times using the simulation model with 10% 

sample size and 100 iterations. 

Table 3.1: North Carolina countries with evacuation orders during Hurricane Florence 

County 
County Seat 1 

Name 
Population 
in 2019 2 

Number of 
Families 

County Name County Seat 1 Population 
in 2019 2 

Number of 
Families 

Beaufort Washington 47,168 15,829 Hyde Swan Quarter 5,213 1,750 

Brunswick Bolivia 131,815 44,234 Jones Trenton 9,594 3,220 

Carteret Beaufort 69,070 23,178 Lenoir Kinston 56,756 19,046 

Columbus Whiteville 56,068 18,815 New Hanover Wilmington 227,938 76,490 

Craven New Bern 102,491 34,393 Onslow Jacksonville 195,069 65,460 

Currituck Currituck 26,363 8,847 Pamlico Bayboro 12,701 4,263 

Dare Manteo 36,222 12,156 Pender Burgaw 60,399 20,269 

Duplin Kenansville 58,967 19,788 Tyrell Columbia 4,131 1,387 

1 It is assumed that vehicles evacuate from the area around county seats. 
2 The population was retrieved from https://www.northcarolina-demographics.com/counties_by_population. 

Table 3.2: Two scenarios in the cast study 

Scenario 1 Scenario 2  

Percentage of families choosing shelter-in-place  5% 10% 

48–72 hours before landfall 8% of families and 10% road capacity 
Departure and 

24–48 hours before landfall 20% of families and 28% road capacity 
available road 
capacity Within 24 hours before landfall 67% families and 62% families and 

90% road capacity 90% road capacity 

95% evacuees depart during the daytime (6AM – 6PM) 
Departure time 

5% evacuees depart during the nighttime (6PM – 6AM) 
distribution 

Uniform distributions with two departure rates for the daytime and nighttime, respectively 
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3.3.2 Model validation 

Hourly traffic data in eastern NC during Hurricane Florence were collected and provided by 

the traffic survey group of the NC Department of Transportation. The data set includes hourly 

traffic volumes at 38 locations, half of which are in the study area. However, hourly traffic 

data with 72 hours before the landfall are missing at the most locations in the study area due 

to the sensor failures caused by the flood during Hurricane Florence. Only one sensor located 

in Wayne County collected hourly traffic data within 24-72 hours before the landfall. We 

compared the observed and simulated daily evacuation traffic volumes at this location to 

validate our hurricane evacuation simulation model. The comparison results in Table 3.3 show 

that the observed daily evacuation traffic volumes are within the 95% intervals of the simulated 

daily evacuation traffic volumes.  

Table 3.3: Comparison of the observed and simulated daily evacuation traffic volumes 

Observed daily 
evacuation 

traffic 

Simulated daily evacuation traffic 

Average Standard error 95% interval 

48–72 hours before landfall 234 232 17 [199.68, 265.32] 

24–48 hours before landfall 348 357 11 [335.44, 378.56] 

3.3.3 Results and discussion 

Figure 3.5 shows that for each simulation run, the average trip duration converges to a steady 

value after 80 iterations. This implies that all agents’ evacuation plans have been optimized 

under a random evacuation travel demand after 80 iterations. Our results show that optimized 

individual evacuation plans can reduce the average trip duration by 8% – 12%, comparing to 

taking the shortest path without considering traffic conditions (Iteration 0). Figure 3.6 shows 

that less evacuation vehicles are on route within 48–72 hours before landfall. However, Figure 

3.5 reveals that the average duration of evacuation trips within 48–72 hours before landfall is 

significantly longer than that within 48 hours before landfall. This is because the road capacity 

for evacuation within 48–72 hours is much lower. The results in Figures 3.5 and 3.6 also reveal 

that a higher percentage of families choosing shelter-in-place slightly reduces the amount of 

en-route evacuation vehicles and the average duration of evacuation trips. 
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Figure 3.5: Convergence of the average trip duration 

Figure 3.6: En-route evacuation traffic over time 
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Study 4 – Judgment Characterization for Emergency Evacuation Using Lens Model: A 

Machine Learning Approach 

4.1 Research Problem 

Intelligent Transportation Systems play an important role in mass emergency evacuations. In 

dealing with all humanitarian aspects of emergencies, emergency preparedness and disaster 

management are essential. Evacuation Planners (EP) and individuals' decisions during 

emergency preparation involve complex behavioral factors [21]. In this study, we proposed 

to characterize EPs’ decision-making behavior during emergency evacuation using machine 

learning algorithms and statistical methods. In doing so, a decision-making tool, the 

Brunswik Lens model, was used to describe the correlation between the environment and the 

behavior of organisms in the environment. Additionally, identifying significant cues for 

residents to decide dynamic evacuation routes under an uncertain environment and having 

incomplete information is somewhat limited due to how stochastic decision-making can be.   

4.2 Methodology and Results 

In the modeling process, a judgment model is created with cues influencing the judgment. In 

the previous studies [22-24], the researchers considered the variables including wind speed, 

rainfall, number of households affected, flood level, median household income, and the 

poverty level. These variables (cues) were found to influence evacuation in NC while 

preparing for an impending hurricane. The goal is to create a judgment model for an 

emergency to gain insight into the decision behavior of the various entities involved when the 

environment presents multiple cues. 

The judgment data about Hurricane Matthew was retrieved from multiple federal, 

state governments and other websites. All data collected are related to counties that were 

affected by Hurricane Matthew in NC. The weather-related data were collected from October 

8th to 9th, 2016, when the hurricane approached. Socio-economic data such as poverty, 

median household income level, poverty level data, and disaster data were obtained for the 

year 2016 from the United States Census Bureau (USCB), United States Department of 

Agriculture Economic Research Service (USDA), and WebEOC [25], respectively.  
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Weather data was mainly taken from National Oceanic and Atmospheric 

Administration (NOAA) and United States Geological Survey, respectively. The data 

collected consisted of seven variables and 42 observations (counties). All seven variables 

examined were numerical and normally distributed. 

4.2.1 Hypotheses development 

The lens model framework has been used to describe the decision-making behavior of 

experts in different domains from the perspective of both the organism (expert) and the 

environment (domain area). This model uses primarily statistical methods (linear regression) 

to quantify judgment tasks. Furthermore, machine learning (ML) techniques have been 

proven to be a valuable tool in capturing the decision-making behavior of judges with higher 

accuracy than the standard regression model in some domains [26].  

Hypothesis 1a (H1a): ML algorithms can quantify the decision-making behavior of experts in 

an emergency evacuation with incomplete information with satisfactory performance. 

Hypothesis 1b (H1b): ML algorithm models can/will outperform statistical approaches in 

characterizing the decision-making behavior of experts in an emergency evacuation 

situation. 

4.2.2 Brunswik Lens model 

Figure 4.1 shows the Brunswik Linear Lens Model representation of single-system design 

(ecological criterion unavailable or not of interest) [27]. The Lens Model framework and its 

related parameters can capture and quantify judgment policies. Figure 4.1(a) represents the 

model of the criterion or environment. This model describes the relationship between the 

ecological criterion value (e.g., individuals' decision to evacuate or not) and the cue values 

accessible at the time a judgment is made. Figure 4.1(b) represents the judge's policy or 

strategy. It describes the relationship between the cue values and the criterion value. In 

Figure 4.1(b), the judgments are related to each cue, known as cue utilization validity. The 

pattern of cue utilization demonstrated by a judge determines the judgment policy, 𝑌ௌ, 

represents the EPs’ judgment and is modeled as a linear combination of a set of k cues 

(𝑋 , 𝑖 ൌ  1, … . , 𝑘). 
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Figure 4.1: Brunswik Linear Lens Model representation of single system design (ecological 

criterion unavailable or not of interest). 
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𝑌ௌ ൌ ∑
ୀଵ 𝛽௦𝑋  𝑒 (1) 

In Equation (1), the 𝛽௦ denotes the weights of the cues that contribute to the judge's decision, 

and e represents the scope to which the cognitive model misses the actual value when trying to 

predict the judgment, 𝑌ௌ [27]. Thus if 𝑌ௌ denotes the cognitive model, then  

𝑌ௌ ൌ 𝑌ௌ  𝑒  (2) 

The correlation between 𝑌ௌ and 𝑌ௌ, denoted by 𝑅௦, measures the cognitive control with which a 

judgment strategy is executed. Consistency refers to the similarity between judgments made to 

repeated profiles of cue information [27]. 

𝑅௦ = corr (𝑌௦, 𝑌௦) (3) 

4.2.3 Machine learning algorithms 

Supervised learning is a machine learning technique that uses computational learning theory, 

pattern recognition, and algorithm construction to map inputs to the output. Six (6) machine 

learning algorithms were also used to create the judgment model, namely linear discriminant 

analysis (LDA), K-nearest neighbor (KNN), logistic regression (LR), classification and 

regression tree (CART), Naive-Bayes (NB), support vector machine (SVM). Python 

packages provide algorithms built in their libraries. Figure 4.2 shows the steps in Machine 

Learning. 

Input
Data 

Data Pre-
Processing 

Descriptive
Statistics 

Data 
Visualization 

Splitting
Datasets(75%
Training 25%

Testing) 

Cross 
Validation 

of the 
model 

Prediction 
of the 
model 

Figure 4.2: Steps in machine learning. 

4.2.3 Evaluation metrics 

The two-performance metrics for the evaluation of models were Cross-Validation Accuracy 

(CVA) and Prediction/Model Accuracy (Accuracy). A ten-fold cross-validation is used in 

this study, and the accuracy is defined as: 
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்ା்ே 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ሺ𝑃𝐴ሻ ൌ  , (4)
்ା்ேାிାிே 

where TP, TN, FP and FN represent true positive, true negative, false positive, and false 

negative, respectively. 

4.2.4 Lens model parameter, ( 𝑌ௌ) and 𝑅௦ 

The supervised machine learning techniques: LR, LDA, KNN, CART, NB, SVM as shown in 

Figure 4.3, also represented interesting accuracies but did not perfectly estimate the judgment 

model since model accuracies were 0.66, 0.72, 0.69, 0.6, 0.65 and 0.76, respectively. Figure 

4.3 displays the cross-validation accuracy for all the machine learning models and data types 

after 75% of the judgment data is used in training them, and the model accuracy after 25% of 

the data is used to test the model. In the Judgment model, SVM generated a high CVA of 

approximately 73%, and LR, LDA and NB generated a PA of 72.7%. 

The Lens model parameters are computed using the Logistic regression for the 

judgment model. This technique is used as an idiographic-statistical approach to 

understanding the characteristics and conditions of individuals' behavior. This approach also 

helps to capture judgment policies as well as aspects of the judgment process. Logistic 

Regression provides a statistical model that, in its basic form, uses a logistic function to 

model a dichotomous dependent variable. 

SML algorithms 
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Figure 4.3: Accuracies of the six machine learning algorithms 
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Dependent Variable 

In regression analysis, logistic regression (or logit regression) estimates the 

parameters of a logistic model (a form of binary regression). Mathematically, logistic 

regression estimates a multiple linear regression function defined as: 

ቀ 
ሺ௬ୀଵሻ

ଵିሺୀଵሻ
ቁ ൌ  𝛽  𝛽ଵ. 𝑥ଵଶ  𝛽ଶ𝑥ଵଶ ⋯  𝛽𝑥 for i = 1,…, n. (5) 

In the selection of cues, backward elimination regression was used. In the backward 

elimination method, all the cues are initially used to build the model. Subsequently, the cue 

with the highest p-value is eliminated if the p-value is greater than the significance level 

(0.05). This is repeated, and a single cue is eliminated for each iteration until the cue shows a 

p-value less than 0.05. However, in this application, all the cues were eliminated except the 

wind speed. This means that only one of the cue weights contributed well enough to the 

model. The pseudo-R2 value validates the performance of the model.  

Figure 4.4 shows the results of logistic regression for judgment when all cues were used. 

Figure 4.4 shows the R2 for the judgment model ( 𝑌ௌ) and a correlation (r) of 50.2%. For the 

judgment model ( 𝑌ௌ), R2 values were very low indicating that the cues were not able to 

produce the best model. Table 4.1 shows the weighting applied to each cue that contributed 

to the EPs’ judgment. These weights explain how the judge's policy was made based on the 

cue utilization validities. 

Figure 4.4: Logistic regression output for judgment when all cues were used 
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Table 4.1: Cue weights 

Cues Relative(cue) weight 

Shelters 0.144 

Wind speed (mph) 0.358 

Rainfall (in) 0.217 

Households 0.141 

Food level (ft) 0.016 

Median Income ($) 0.031 

Poverty Percentage (%) 0.092 

Independent variables 

The total number of independent variables, also known as the cues in this context, is 

seven (7), as shown in Appendix A. Checking the correlation between the variables (cues) 

helps eliminate all redundant cues. The correlation between two variables is defined as: 

∑ ሺିሻሺ௬ି௬ሻ𝑟௫௬ ൌ  , (6)
ට∑ ሺିሻమ ∑ ሺ௬ି௬ሻమ 

where 

● 𝑟௫௬  the correlation coefficient of the linear relationship between the variables 

x and y 

● 𝑋 – the values of the x-variable in a sample  

● 𝑋 – the mean of the values of the x-variable 

● 𝑦 – the values of the y-variable in a sample 

● 𝑦 – the mean of the values of the y-variable 

There were no high positive correlations among cues, as shown in Figure 4.5, 

indicating that all cues are independent and can be used for prediction 
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Figure 4.5: Correlation matrix for the cues 
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Study 5 – Decision-Making Model for Emergency Evacuation Based on the Lens Model 

Using Machine Learning and Monte-Carlo Simulation for Incomplete Information 

Environment 

5.1 Research Problem 

As an extension of Study 4, the ecology data of the Lens Model (LM) is unknown, and the 

LM is designed as a single system (design with incomplete information). Because there is no 

data to create an ecological model, there are limitations within the LM framework in terms of 

understanding and determining how judgments correspond to the ecology.  

To simulate unknown data, Monte-Carlo Simulation (MCS), a broad class of 

computational algorithms based on repeated random sampling to get numerical results, is 

often used in conjunction with the law of large numbers. LLN (law of large numbers) 

explains how many times the same experiment can be performed through probabilistic 

theory. As a result of this law, the average outcome of a large number of trials should lead a 

simulated dataset to be close to the true value or expected value. The simulated data was used 

to test and train the ecological model. Using MCS, we analyzed decision-making behavior 

during an emergency evacuation in an incomplete information environment. First, the 

available ecology/criterion data was simulated so a judgment model could be developed 

completely. Secondly, the nonlinear SML algorithms and LM parameters were tested and 

compared to validate their performance. 

5.2 Methodology 

In this section, we explain how hypotheses were developed, how data was collected, how 

models were developed (machine learning and LM), and how predictions were made. We 

also assess the performance of nonlinear machine learning algorithms as well as LM 

parameters.  

According to Cooksey [27], the double-system LM represents the Rule-based Lens 

Model (RLM) paradigm in which the right side of the model describes the judge's cognitive 

system, and the left side is overtly compared to an ecology system. In this study, deciding 

whether to evacuate or not is a continuous judgment of the organism, which is the basis for 

the ecology-judgment model. Matching frequencies are employed by the RLM to predict 
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judgment. Here, the nonlinear Supervised Machine Learning (SML) algorithms were applied 

to predict both cognitive and ecology models in the LM using matching frequencies.  

LM parameters (ra, G, C, Re, and Rs) describe the judgment performance of human 

operators, their knowledge of the environment, their unmodeled knowledge, their ability to 

predict the environment, and their cognitive control respectively, all of which can be extracted 

by machine learning models via Equations (7)–(11). MCS was used to obtain the actual criteria 

(Ye), while historical data was used to obtain the judgment values (Ys).

𝑟𝑎 = corr (𝑌, 𝑌௦) (7)

𝐺 = corr (𝑌, 𝑌௦) (8)

𝐶 = corr (𝑍௦, 𝑍) (9)

𝑅𝑒 = corr (𝑌, 𝑌) (10)

𝑅𝑠 = corr (𝑌௦, 𝑌௦) (11) 

In these equations, 𝑍 and 𝑍௦ indicate the residual values for the ecology and the judgment, 

respectively; 𝑌 and 𝑌௦ obtained through the Machine Learning models indicate the predicted 

values for ecology and judgment, respectively. 

Figure 5.1: The Rule-based Lens Model framework proposed by Yin & Rothrock [28].  
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5.2.1 Hypothesis development 

The Brunswik approach to understanding the relationship between the organism and the 

environment was probabilistic functionalism that formed the idiographic representation of the 

organism's model of the environment. Therefore, it is logical to suggest that an expert of an 

environment has the inherent knowledge of the environment that governs its judgment. 

Hence, we proposed the following hypothesis: 

Hypothesis 2 (H2): The output of an expert judge can be used to estimate the ecology in the 

case where the output of the ecology is unknown (that is, in the case of a single 

system design). 

Hypothesis 3 (H3): Based on H2, data simulation based on the theory of large numbers can 

approximate the ecology from the information inherent in the output of the expert 

judgment. 

The ecology simulated from the judge's domain knowledge allows fully 

characterizing the emergency evacuation using ML algorithms models. Therefore, the 

hypothesis below was proposed: 

Hypothesis 4 (H4): Can ML algorithm models fully characterize an emergency evacuation 

situation using the judgment output and the simulated ecology. 

Given these models, the incomplete information created by the single system design 

is bridged by the simulated ecology that results in a double system design for the complete 

description of the judgment analysis related to an emergency evacuation. 

5.2.2 Data collection, modeling, and prediction 

Judgment data about Hurricane Matthew were gathered from several federal, state, and other 

government websites. As part of Study 4, all data collected relate to counties in NC that were 

affected by Hurricane Matthew. A total of seven variables were examined, all of which were 

numerical and normally distributed.  
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Due to the lack of Ecology data, Monte-Carlo simulation was used to generate the 

data, which were then used to develop the ecology model. To generate simulated data, 

packages in Python, pandas-montecarlo, were used to utilize the judgment data as historical 

data. Parameters are typically calculated by integrating random instances of parameter values 

taken from probability distribution functions defined by users. 

Five Supervised Machine Learning (SML) models were used to classify each model, 

and prediction accuracies and LM parameters were computed. These SML models were used 

to predict ecological criterion, 𝑌, and human judgment, 𝑌௦. 

5.2.3 Machine learning model development 

There are algorithms built into Python packages. Supervised learning is a method of machine 

learning where algorithms are used to learn how to map an input to an output. The judgment 

model was also created using five nonlinear machine learning algorithms: K-nearest neighbor 

(KNN), Classification and Regression Tree (Decision Tree) (CART), Naive Bayes (NB), 

Support Vector Machine (SVM), Stochastic Gradient Boosting (GB), Adaptive Boosting-

Adaboost (AB). 

An analysis of nonlinear machine learning algorithms (classifications) is presented in 

this study, as well as the methodology used to develop ecology-judgment data. Using the 

classification method, there are four steps involved: data description, preprocessing, feature 

extraction, and classification. Preprocessing involves transforming the data before it is fed 

into the algorithm. It is not feasible to analyze the data since it was gathered in raw form 

from different sources. To remove outliers and standardize the dataset, we used two different 

data preprocessing techniques for machine learning. Since there was no missing data in the 

dataset, Equation (12) was used to eliminate outliers. This means that the dataset has a 

normal distribution, where most of the data values fall within the Gaussian curve with a 

maximum of 3σ. Any dataset that falls outside of these limits is defined as an outlier.  

5.2.4 Evaluation metrics 

Two evaluation metrics were used to evaluate the performance of the models: Cross-

Validation Accuracy (CVA) and Prediction Accuracy (recall). CVA is defined as a statistical 

Multi‐Scale Models for Transporation Systems under Emergency 40 



 

               

 

 

 

method used to estimate the precision of machine learning models. The recall is a 

performance measurement for machine learning classification problems, which can be 

computed using Equation (12).  

𝑅𝑒𝑐𝑎𝑙𝑙= 𝑇𝑃(𝑇𝑃+𝐹𝑁) (12) 

where TP is True Positive, and FN is False Negative. 

5.3 Results and Discussion 

To obtain the actual judgment and criterion (Ye) values, machine learning algorithms were 

applied to both ends of the LM: the ecology side, and the judgment side. To represent both 

judgment and criterion, categorical values were used; “0” for "do not evacuate" and "1" for 

"evacuate." 

5.3.1 Machine learning model evaluation 

Figure 5.2 shows that MCS simulates all the factors that affect individuals' decision-making 

during an emergency evacuation and compares them to observed data. As shown by the 

results, the parameters (simulations = 20, goal = 0.5) used with MCS were able to maintain 

both the observed distribution and the ecological dataset derived from the judgment dataset. 

Figures 5.3 and 5.4 show the estimated mean of the Cross-Validation (CV) accuracy across 

the Supervised Machine Learning models. Only 80% of the data was used for training the 

models. 

Figure 5.3 shows the cross-validation accuracy of the data, and the machine learning 

models for the ecology data. For the ecology data, GB generated a CVA of approximately 

76%. To test the prediction accuracy of the model, only 20% of the data is used. To evaluate 

its performance, Recall is used to determine whether 20% of the data could reasonably 

predict the model. According to Figure 5.3, KNN demonstrated a good prediction accuracy 

of approximately 89%. 

Figure 5.4 shows the cross-validation accuracy of all the machine learning models 

and data after 80% of the judgment data were used in training. The Judgment model 

generated a CVA of approximately 68%. Testing Prediction Accuracy (PA) using 20% of the 
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data and then using Recall to evaluate the performance. Figure 5.4 illustrates the predicted 

values. All models showed fairly high prediction accuracies of approximately 88%. 

Figure 5.2: Density plot of the simulated and the observed datasets superimposed for each 

independent variable. 

Figure 5.3: Performance of Supervised Machine Learning (SML) models based on Cross-

Validation accuracy and prediction accuracy for the Ecology/Criterion data. 
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Figure 5.4: Performance of Supervised Machine Learning (SML) models based on Cross-

Validation accuracy (CV) and Prediction Accuracy (PA) for the Judgment data. 

5.3.2 Lens models parameters 

The correlation between the simulated data (data for criterion) and the observed data 

(judgment data), 𝑟 was 0.66. Table 5.1 shows the LM parameters of the 5 SML models. G 

explains the correlation between 𝑅 and 𝑅௦ confirming the relationship and the consistency 

of the SML models. KNN generated the highest 𝐺 value of 0.655. 𝑅 and 𝑅௦ explain the 

performance in modeling the ecology and capturing the judgment policy, respectively. KNN 

shows a high 𝑅 value of 0.661 and AB, GB, CART and NB show high 𝑅௦ results of 0.745. 

𝐶 shows the correlation between the residuals of the criterion and the judgment data. KNN 

produced the lowest positive 𝐶 value of 0.143. 

Table 5.1: Performance of Supervised Machine Learning (SML) models based on Lens- model 
parameters (G,C,Re,Rs) 

Data G C Re  Rs 

Adaptive Boosting (AB) 0.258 0.377 0.316 0.745 

Gradient Boosting (GB) 0.447 0.378 0.316 0.745 

K-nearest neighbor (KNN) 0.655 0.143 0.661 0.654 

Classification and Regression Tree (CART) 0.60 0.378 0.316 0.745 

Naive-Bayes (NB) 0.447 0.293 0.25 0.745 
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5.3.3 Discussion 

As a result of presented cues, EPs were asked to determine whether to evacuate or not 

evacuate emergencies. To understand the decisions made by individuals and government 

(EP) during an emergency evacuation, the full Lens model was used. For the LM parameters 

to be determined, information (data) from both ends must be available and complete. Since 

an individual's decisions are unknown and uncertain, the left side of the LM criterion or the 

left side of the LM is unknown during an emergency evacuation. In terms of understanding 

and determining how judgments correspond to the criterion, this signifies a single system 

design and creates drawbacks within the LM framework. We are not aware of any studies 

that have explored the possibility of switching from a single system to a double system when 

analyzing emergency evacuations. By simulating the actual criterion with MCS, the first aim 

was to obtain data. However, in this study, the criterion data were simulated based on 

judgment data. The parameter ra measures how well MCS mimics ecological data by 

maintaining the distribution of observed (judgment) data. Our results indicated that MCS was 

66% accurate in simulating ecological data.  

To capture the nonlinear strategies in this evacuation decision problem, five nonlinear 

SML algorithms were used instead of Logistic regression methods within the LM. Multiple 

SML algorithms were used to confirm data sensitivity, and the best SML algorithm was 

examined based on its predictive performance when both ends of the LM were joined and 

correlated. The SML models offer a unique advantage in the development of predictive 

models for both ends of the LM. Consequently, the prediction accuracy of the individual 

SML models and the LM parameters were compared, demonstrating that the SML algorithm 

is capable of modeling both ecology and judgment policy. In terms of modeling the ecology 

(left side of the LM), KNN outperformed the other SML models at mapping to cues the 

criterion (ecological validity). In terms of the human judgment side (right side of the LM), all 

SML models performed equally. Table 5.1 shows that although the C values for all the SML 

models were relatively low, the models were able to capture the non-compensatory strategies 

that existed in the LM. KNN yielded a low Rs as compared to the other SML models.  
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 FINDINGS, CONCLUSIONS, RECOMMENDATIONS 

In the second phase of this CATM project, we 

(1) proposed and tested a graph theoretical approach to analyzing the US airport network 

during a hurricane disruption and a rerouting method to identify feasible airports to 

reroute passengers from a disrupted airport;  

(2) proposed a multi-commodity network flow model with side constraints for 

multimodal rescheduling of airline passengers through less risky airports and with 

limited number of connections and tested the model’s functionality on a simulated 

network and four real carrier networks;  

(3) developed an agent-based hurricane evacuation simulation model that simulates the 

trips of individual evacuation vehicles given an evacuation scenario and validated the 

simulation model using the NC highway system and the Hurricane Florence 

evacuation in NC; 

(4) investigated significant cues for Evacuation Planners’ decisions during hurricane 

evacuation using the Brunswik Linear Lens Model and the six machine learning 

algorithms; and  

(5) extended the Lens model (LM) using Monte-Carlo simulation (MCS) and nonlinear 

supervised machine learning (SML) algorithms to analyze decision-making behavior 

during an emergency evacuation in an incomplete information environment.  

For rescheduling airline passengers whose flights are cancelled due to severe weather, 

our results showed that the proposed graph theoretical approach can help recognize the 

airports that might be affected beforehand, which, in turn, can aid in planning for a 

disruption, and the planning for rescheduling of airline passengers based on a hurricane 

forecast path may alleviate the problem of passenger disruption. Our experimental results 

also revealed that hurricane impact distance and forecast track affect recognizing potential 

disruptors and, in turn, their disruptees, and also affect identifying potential airports to 

reroute to from a disrupted airport. This may result in an inefficient planning/rescheduling to 

handle disruption due to a hurricane. Our findings for multimodal rescheduling indicated that 

for both simulated and real carrier networks, road transportation is utilized for rescheduling 

passengers when such option is available. This implied that it is advisable to hire buses to 
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transfer passengers when a disruptive event is anticipated to occur at a particular airport. The 

spare aircrafts should be also utilized in rescheduling at some circumstances. Our analysis on 

the four carriers showed that the airports in northeastern US region may play a major role as 

connections for multimodal rescheduling, and some of these airports serve as either operating 

bases or focus cities for the airlines. 

For hurricane evacuation, our simulation results showed that optimized individual 

evacuation plans can reduce the average evacuation trip duration by 8% – 12% comparing 

taking the shortest path without considering traffic conditions, and the percentage of families 

choosing shelter-in-place slightly affects evacuation traffic and travel time. The developed 

hurricane evacuation simulation model can estimate evacuation traffic volumes and average 

travel time, which could provide insights for hurricane evacuation planning and management. 

This simulation model can be used as a tool to support hurricane evacuation planning by 

comparing different traffic control policies under different hurricane evacuation scenarios. 

Our results of decision making cues for hurricane evacuation showed that among the 

seven cues we tested, only one cue (wind speed) contributes to Evacuation Planners’ decision 

(i.e., whether to issue an evacuation order). Our experimental results demonstrated that 

Monte-Carlo simulation was 66% accurate in simulating ecological data, and the SML 

algorithms are capable of modeling both ecology and judgment policy. In terms of modeling 

the ecology (left side of the LM), KNN outperformed the other SML models at mapping to 

cues the criterion (ecological validity). In terms of the human judgment side (right side of the 

LM), all SML models performed equally. The Rule-based Lens model (RLM) developed by 

combining the ecological and judgment models can help quantify and understand evacuee 

decision making. The RLM developed in our study contributes to disaster management 

literature by describing decision-making when limited information is available for data-

supported models. 
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APPENDIX A: Data for the Judgment Model 

Table A.1: Data obtained from multiple sources for the judgment model 

Name of 
County 

No of 
Shelters 

Wind 
Speed Rainfall 

Households 
affected 

Flood 
Level (ft) 

Median 
Household 

Income 
Poverty 
Percent Evacuate 

Anson 1 45 4 74 24.39 33,228 25.1 0 

Beaufort 2 50 7.5 850 12.50 45,860 19 1 

Bertie 2 40 10.5 1025 16.67 34,127 24.4 0 

Bladen 4 39 12 2817 36.34 34,422 26.4 0 

Brunswick 3 67 7 784 18.98 47,000 13.8 0 

Carteret 2 60 6.5 49 8.48 52,000 12.3 1 

Columbus 5 59 11.5 5189 2.00 40,000 24.6 0 

Cumberland 6 60 13 14803 58.70 42,107 18.8 0 

Dare 0 75 6 1121 3.00 56,489 10.9 1 

Duplin 3 49 7 1322 19.92 39,146 21.3 0 

Durham 1 60 11.5 850 17.73 54,093 16.1 0 

Edgecombe 4 60 11.5 3139 36.15 35,000 23.9 1 

Franklin 0 45 8.41 13 23.18 50,000 15.3 0 

Gates 0 64 9 158 16.19 49,258 15.2 0 

Greene 1 50 9 579 24.18 38,010 23.7 0 

Harnett 1 57 7 1683 19.31 51,682 16.1 0 

Hyde 0 75 6 194 2.00 56,285 22.3 1 

Hertford 1 40 9 453 15.40 37,000 26.1 0 

Hoke 1 60 11.5 1786 12.84 45,829 19.5 0 

Johnston 3 50 11.5 1683 28.90 57,151 13.2 0 

Jones 1 50 6.5 226 18.46 34,005 21.5 0 

Lee 1 45 11.5 190 11.44 50,547 16.9 0 

Lenoir 1 51 9 3291 28.24 38,000 20.6 1 

Martin 1 50 9 213 11.60 35,080 22.5 0 

Montgomery 0 50 4 0 10.40 37,800 21.4 0 

Moore 1 55 5 343 8.91 56,678 11.4 0 

Nash 1 55 7 927 15.26 47,200 16.5 0 
New 
Hanover 

1 75 6 23 3.00 56,200 17.3 0 

Onslow 6 50 6.5 442 20.55 38,000 13.7 0 

Orange 1 45 6.5 850 16.25 61,130 12.8 0 

Pamlico 1 50 5 7569 2.00 46,762 18.5 0 

Pasquotank 1 64 8.5 476 16.19 45,400 17 0 

Pender 3 68 6 957 17.79 50,000 15 1 

Pitt 3 69 8 3303 24.46 50,000 21.5 1 

Richmond 0 50 6 23 17.60 37,000 24.9 0 

Robeson 5 67 11 18482 25.00 33,000 27.8 1 
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Table A.1: (cont’d) 

Name of 
County 

No of 
Shelters 

Wind 
Speed Rainfall 

Households 
affected 

Flood 
Level (ft) 

Median 
Household 

Income 
Poverty 
Percent Evacuate 

Sampson 3 60 12 2236 27.92 38,835 19.6 0 

Scotland 0 55 7 500 15.47 52,000 27.6 0 

Vance 1 55 5 850 2.00 32,733 24.2 0 

Wake 1 45 9 916 5.47 76,000 9.2 0 

Wayne 3 50 6.5 6695 2.00 45,000 20.6 1 

Wilson 1 52.5 10.5 721 2.00 43,456 22.3 0 
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