New AST Ph.D. Curriculum Guide Effective 2024-2025 Applied Science and Technology, Ph.D. College of Science and Technology Program Director: Jenora Waterman Email: jdwaterm@ncat.edu Phone: 336-285-2329 The mission of the Applied Science & Technology Ph.D. program is to prepare students for high-level science and technology careers in industry, research, and government. Graduates will be able to conceive, develop, and conduct original research that applies physical, mathematical, and technological methods to provide solutions to a broad range of emerging local, national, and global problems related to Atmospheric, Environmental and Energy Science; Applied Physics; Bioscience; Applied Chemistry; Data Science and Analytics; Applied Engineering Technology; Information Technology; Technology Management; Geospatial Sciences; and STEM Education. #### **Admission Requirements** - B.S. degree in a science, technology, engineering, math (STEM) or related discipline with a GPA≥3.25/4.0 or a M.S. degree in a science, technology, engineering, math (STEM) or related discipline with a GPA≥3.0/4.0 from a college or university recognized by a regional or general accrediting agency - GRE verbal and quantitative scores, no minimum score requirement #### **Program Outcomes** - Communication Skills Students completing the Applied Science & Technology Ph.D. program will exhibit effective oral communication skills in terms of customizing presentations to the audience, displaying information, and delivering the presentations. - Critical Thinking Skills Students completing the Applied Science & Technology Ph.D. program will effectively use quantitative and qualitative analytical problem-solving skills in terms of defining hypotheses/research questions, reviewing research literature, developing a research plan, identifying the broader impacts of research, and developing a research timetable. - Disciplinary Expertise Students completing the Applied Science & Technology Ph.D. program will demonstrate discipline specific expertise in terms of the scientific method, applying technical knowledge to answer research questions, experimental plans and data analysis, analytical methods, and research ethics. - Research/Creative Engagement Students completing the Applied Science & Technology Ph.D. program will demonstrate ability to engage productively in the review and conduct of disciplinary research in terms of making conference presentations and publishing refereed journal publications. # **Degree Requirements** Total credit hours: 66 (post B.S.), 42 (post M.S.) - Core courses (9 credits): - o AST 830 Foundations of Scientific Research - o AST 831 Math and Computational Modeling (or other graduate analytical modeling course that builds upon a student's previous background) - STAT 727 Multivariate Statistical Analysis, STAT 705 Applied Statistics for Biological & Behavioral Sciences or STAT 708 Linear Models for Data Science (or other graduate statistics course that builds upon a student's previous background) - AST 992 Doctoral Seminar: 6 credits post B.S., 3 credits post M.S. - AST 997 Doctoral Dissertation: 21 credits post B.S., 15 credits post M.S. - Pass qualifying exam, preliminary exam, and dissertation defense - In consultation with advisor, take 18 credit hours (15 credits post M.S.) of foundation and elective courses to build expertise and research specialization within one of the following concentrations: - **Applied Chemistry** - **Applied Physics** 0 - o Atmospheric, Environmental and Energy Science - o Bioscience - Data Science and Analytics - Information Technology - o Technology Management - STEM Education - General no specified concentration - In consultation with advisor, take 12 credit hours (post B.S.) of additional courses relevant to research area #### **Concentration Courses** For each program concentration, students will typically take courses that are included in the following lists with additional courses possible with approval of research adviser and program director: ## **Applied Chemistry** The Applied Chemistry Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: Applied Chemistry Foundation Courses (6 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: CHEM 611 Advanced Inorganic Chemistry CHEM 827 Organic Structural Spectroscopy Applied Chemistry Expertise & Research Specialization (12 credit hours; 9 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Applied Chemistry. The purpose of this requirement is to provide depth of understanding of Chemistry concepts, in particular, concepts that may be the focus of research activities. | CHEM | 611 | Advanced Inorganic Chemistry | |------|-----|--| | CHEM | 621 | Intermediate Organic Chemistry | | CHEM | 624 | Qualitative Organic Chemistry | | CHEM | 631 | Electroanalytical Chemistry | | CHEM | 641 | Instrumentation of the Modern Sciences | | CHEM | 642 | Techniques in X-ray Crystallography | | CHEM | 643 | Introduction to Quantum Mechanics | | CHEM | 651 | General Biochemistry | | CHEM | 652 | General Biochemistry Lab | | CHEM | 673 | Introduction to Computational Chemistry | | CHEM | 674 | Computational Methods/Protein Modeling Drug Design | | CHEM | 716 | Selected Topics in Inorganic Chemistry | | CHEM | 722 | Advanced Organic Chemistry | | CHEM | 732 | Advanced Analytical Chemistry | | CHEM | 743 | Chemical Thermodynamics | | AST | 812 | Environmental Chemistry | | | | | | BMEN 71 | Biomaterials and Biocompatibility | |----------|---| | ECEN 70 | Electronic Ceramics | | NANO 70 | Simulation Modeling Methods in Nanoscience and Nanoengineering | | NANO 702 | 2 Fundamentals of Nanoengineering Physical Principles | | NANO 703 | Fundamentals of Nanoengineering Chemical and Biochemical Principles | | NANO 704 | Fundamentals of Nanomaterials | | NANO 705 | Nano Safety | | NANO 71 | Introduction to Nanoprocessing | | NANO 72 | Nanobioelectronics | | NANO 73 | Introduction to Nanomodeling and Applications | | NANO 81 | Polymeric Materials Engineering | | NANO 812 | 2 Process Modeling in Composites | | NANO 82 | Advanced Nanosystems | | NANO 85 | Computational Nano Modeling Lab | | NANO 852 | Nanoelectronics Laboratory | | NANO 853 | Nano-Bio Electronics Lab | | NANO 854 | Nanomaterials Laboratory | | NAN 601 | | | CHEM 81 | Physical Methods for Inorganic Chemistry | | CHEM 812 | | | CHEM 818 | 3 Introduction to Soft Matter | | CHEM 823 | 3 Integrative Medicinal Chemistry | | CHEM 827 | Organic Structural Spectroscopy | | CHEM 833 | Biosensors and Bioanalytical Technologies | | CHEM 84 | Advanced Mass Spectrometry Instrumentation | | CHEM 856 | 6 Protein Structure and Function | | CHEM 885 | 5 Special Topics | | NAN 615 | Intro Spectroscopy Methods in Nanoscience | | NAN 630 | • • • | | NAN 705 | Macromolecular and Supramolecular Chemistry Nanoscience | | NAN 730 | 1 | | NAN 77 | Computational Quantum Nanochemistry | | | | The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. # **Applied Physics** The Applied Physics Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: *Applied Physics Foundation Courses* (12 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: PHYS 600 Classical Mechanics PHYS 615 Fundamentals of Electromagnetic Theory PHYS 620 Quantum Mechanics I PHYS 630 Statistical Mechanics Applied Physics Expertise & Research Specialization (6 credit hours; 3 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Applied Physics. The purpose of this requirement is to provide depth of understanding of Physics concepts, in particular, concepts that may be the focus of research activities. | PHYS | 600 | Classical Mechanics | |------|-----|--| | PHYS | 605 | Mathematical Methods | | PHYS | 615 | Fundamentals of Electromagnetic Theory | | PHYS | 620 | Quantum Mechanics I | | PHYS | 630 | Statistical Mechanics | | PHYS | 715 | Advanced Electromagnetic Theory | | PHYS | 720 | Quantum Mechanics II | | PHYS | 730 | Optical Properties of Matter | | PHYS | 737 | Physics of Solids | | PHYS | 738 | Nuclear Physics | | PHYS | 745 | Computational Physics | | PHYS | 746 | Methods in Radiation Detection and Measurement | | PHYS | 843 | Experimental Methods | | PHYS | 850 | Quantitative Analysis in Biophysics | | PHYS | 885 | Special Topics | | NAN | 603 | Nanophysics | | | | | ## **Qualifying Examination courses:** The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. #### Atmospheric, Environmental and Energy Science The Atmospheric, Environmental and Energy Science Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: **Atmospheric, Environmental and Energy Science Foundation Courses** (12 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: AST 850 Physical Meteorology AST 851 Dynamic Meteorology **AST 852 Climatology** AST 854 Advanced Synoptic Weather Analysis # Atmospheric, Environmental and Energy Science Expertise & Research Specialization (6 credit hours; 3 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Atmospheric, Environmental and Energy Science. The purpose of this requirement is to provide depth of understanding of Atmospheric, Environmental and Energy Science concepts, in particular, concepts that may be the focus of research activities. | AST | 812 | Environmental Chemistry | |-----|-----|-------------------------------------| | AST | 813 | Sustainable Energy Systems | | AST | 814 | Life Cycle Analysis | | AST | 821 | Environmental Energy Econometrics I | | AST | 841 | Biomaterials Characterization | | |---|----------|--|--| | AST | 842 | Biomass Thermal Conversion Processes | | | AST | 843 | Biomass Biological Conversion Processes | | | AST | 844 | Environmental and Policy Studies of Biomass Use | | | AST | 850 | Physical Meteorology | | | AST | 851 | Dynamic Meteorology | | | AST | 852 | Climatology | | | AST | 853 | Numerical Weather Prediction | | | AST | 854 | Advanced Synoptic Weather Analysis | | | AST | 855 | Principles of Air Quality | | | AST | 856 | Atmospheric Aerosols | | | AST | 857 | Advanced Remote Sensing | | | AST | 858 | Tropical Meteorology | | | AST | 859 | Advanced Mesoscale Analysis | | | AST | 885 | Special Topics | | | NANO | 761 | Introduction to Nano Energy | | | NANO | 861 | Advanced Nano Energy Systems | | | CM | 704 | Special Topics in Renewable Energy Technology | | | CM | 679 | Environmental Issues in Construction Management | | | EPT | 687 | Electrical Power Generation using Nuclear Technology | | | EHS 60 | 00 Envir | onmental and Occupational Toxicology | | | EHS 613 Industrial Hygiene Ventilation | | | | | EHS 704 Environmental and Occupational Epidemiology | | | | | EHS 708 Environmental and Occupational Safety and Health Management | | | | | EHS 711 Current Issues in Environmental and Occupational Health | | | | EHS 885 Special Topics The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. #### **Bioscience** The Bioscience Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: **Bioscience Foundation Courses** (9 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: BIOL 730 Evolutionary Medicine BIOL 749 Recent Advances in Cell biology **BIOL 855 Systems Biology** #### Bioscience Expertise & Research Specialization (9 credit hours; 6 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Bioscience. The purpose of this requirement is to provide depth of understanding of Bioscience concepts, in particular, concepts that may be the focus of research activities. | BIOL | 615 | Principles of Virology | |-------------|-----|---| | BIOL | 630 | Molecular Genetics | | BIOL. | 640 | Introduction to Bioinformatics and Genomic Research | | 651 | Principles and Practice of Immunology | |-----|---| | 700 | Environmental Biology | | 703 | Experimental Methods Biology | | 704 | Cell and Molecular Biology | | 720 | Environmental Influences on Human Diseases | | 749 | Recent Advances in Cell Biology | | 762 | Molecular Pathogenesis of Cancer | | 843 | Biomass Biological Conversion Processes | | 771 | Bioinformatics Genome Analysis | | 782 | Cellular Pathobiology | | 713 | Biotechnology Entrepreneurship | | 830 | Advanced Techniques in Integrative Biosciences | | 831 | Cellular and Molecular Biology of Disease | | 832 | Microbial Pathogenesis | | 833 | Recent Advances in Immunology | | 834 | General Physiology I | | 835 | General Physiology II | | 855 | Advances in Systems Biology | | 885 | Special Topics | | 705 | Applied Statistics for Biological and Behavioral Sciences | | 824 | Biostatistics Health Analytics | | 602 | Nanobiology | | 620 | Immunology Nanoscience | | 625 | Molecular Biology in Nanosciences | | 626 | Introduction to Stem Cell Biology and Ethics | | 745 | Nanoimaging | | 750 | Nanomedicine | | | 700
703
704
720
749
762
843
771
782
713
830
831
832
833
834
835
855
885
705
824
602
620
625
626
745 | The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. #### **Data Science and Analytics** The Data Science and Analytics Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: *Data Science and Analytics Foundation Courses* (12 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: STAT 707 Introduction to Data Science STAT 708 Linear Models for Data Science STAT 709 Statistical Foundations of Data Analytics DAAN 704 Predictive Analytics & Machine Learning or MATH 782 Statistical Data Analytics & Visualization **Data Science and Analytics Expertise & Research Specialization** (6 credit hours; 3 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Data Science and Analytics. The purpose of this requirement is to provide depth of understanding of Data Science and Analytics concepts, in particular, concepts that may be the focus of research activities. STAT 703 Probability Theory & Application STAT 704 Theory and Methods of Statistics STAT 705 Applied Statistics for Biological & Behavioral Sciences STAT 710 Statistical Deep Learning STAT 711 Statistical Computing and Algorithm Design & Analysis STAT 712 Bayesian Statistics STAT 713 Sampling Survey Methods STAT 716 Design and Analysis of Educational Experiments STAT 722 Nonparametric Statistics STAT 723 Categorical Data Analysis STAT 727 Multivariate Statistical Analysis STAT 777 Statistical Consulting Practice STAT 808 Advanced Regression Methods for Data Science STAT 810 Causal Inference and Learning STAT 823 Time Series & Business Analytics STAT 824 Biostatistics & Health Analytics DAAN 703 Database Management and Visualization DAAN 705 Data Privacy, Ethics and Security DAAN 784 MS Practicum in Data Analytics MATH 603 Introduction to Real Analysis MATH 607 Theory of Numbers MATH 612 Advanced Linear Algebra MATH 631 Linear & Non-Linear Programming MATH 633 Stochastic Process MATH 650 Ordinary Differential Equation MATH 651 Partial Differential Equations MATH 652 Methods of Applied Mathematics MATH 665 Principles of Optimizations MATH 675 Graph Theory MATH 685 Special Topics in Applied Mathematics MATH 690 Scientific Programming for Mathematical Scientists MATH 691 Special Topics in Applied Mathematics MATH 700 Theory Function of Real Variables I MATH 701 Theory Function of Real Variables II MATH 709 Discrete and Combinatoric Mathematics for Data Science MATH 711 Theory Function of Complex Variables MATH 712 Numerical Linear Algebra MATH 717 Special Topics in Algebra MATH 720 Special Topics in Analysis MATH 723 Advanced Topics Applied Mathematics MATH 731 Advanced Numerical Methods MATH 733 Advanced Probability & Stochastic Processes MATH 751 Solution Methods for Integral Equations MATH 752 Calculus of Variations & Control Theory MATH 761 Interdisciplinary Computational Science Project I MATH 762 Interdisciplinary Computational Science Project II MATH 765 Optimization Theory & Applications MATH 781 Mathematics & Computational Modeling MATH 782 Statistical Data Analytics and Visualization MATH 885 Special Topics in Data Science & Analytics CST 764 Advanced Big Data Analytics COMP 751 Data Analytics Tools and Techniques COMP 765 Data Mining NAN 605 Mathematical Methods #### **Qualifying Examination courses:** The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. # **Information Technology** The Information Technology Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: *Information Technology Foundation Courses* (12 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: CST 605 Principles of Computer Networking or CST 625 Computer Database Management CST 700 Project Management for IT Professionals CST 702 Statistical Methods CST 750 Computer System Security *Information Technology Expertise & Research Specialization* (6 credit hours; 3 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Information Technology. The purpose of this requirement is to provide depth of understanding of Information Technology concepts, in particular, concepts that may be the focus of research activities. # CST 625 Computer Database Management | CSI 023 Computer Database Management | | | |--------------------------------------|-----|---| | CST | 700 | Project Management for IT Professionals | | CST | 702 | Statistical Methods | | CST | 714 | Reconfigurable Computing | | CST | 717 | Health Informatics System Architecture | | CST | 725 | Wide Area Networks | | CST | 729 | Data Warehousing | | CST | 731 | Knowledge Discovery Systems | | CST | 732 | Text Mining | | CST | 733 | Data Visualizations | | CST | 735 | Telecom Management Issues | | CST | 745 | Network Services for the Enterprise | | CST | 750 | Computer System Security | | CST | 752 | Advanced Computer Forensics | | CST | 755 | Enterprise Management Systems | | CST | 760 | Intermediate Enterprise Systems | | CST | 764 | Advanced Big Data Analytics | | CST | 765 | Advanced Enterprise System Operation | | CST | 770 | Survey of Virtualization Technology | | CST | 850 | Advanced Wireless Communication Systems | | CST | 855 | Advanced Optical Communication Systems | | CST | 885 | Special Topics | | COMP | 727 | Secure Software Engineering | Secure Social Computing COMP 823 | CSE | 703 | Data Structure Software Principles & Programming | |-----|------|--| | CDL | , 00 | Data Structure Software Timespies & Trogramming | CSE 806 Computational System Theory #### **Qualifying Examination courses:** The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. # **STEM Education** The STEM Education Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: # STEM Education Foundation Courses (6 credit hours; 3 credit hours post M.S.) The purpose of the Foundation requirements is to provide a bridge into this interdisciplinary field by integrating STEM and education concepts: | AST | 801 | History and Philosophy of STEM Education | |-----|-----|---| | AST | 802 | Theories of Development and STEM Thinking | | AST | 803 | STEM Education Methods | #### **STEM Expertise** (3 credit hours) Students are required to complete a coherent sequence of graduate courses in a STEM field other than STEM Education. The purpose of this requirement is to provide depth of understanding of STEM concepts, in particular, STEM concepts that may be the focus of STEM Education research activities. ## STEM Education Research Specialization (3 credit hours) The purpose of the Specialization requirement is to develop depth of knowledge in one area of STEM Education. | AST | 804 | Cognitive Devices in STEM Learning Environments | |-------------|-----|--| | TECH | 719 | Technology Education: Design in Construction | | TECH | 720 | Technology Education: Design in Manufacturing | | TECH | 722 | Technology Education: Design in Transportation | | TECH | 730 | Diversity Issues in Education and Industry | | TECH | 762 | Evaluation of Technological Education Programs | | TECH | 763 | Technology Education for Elementary Grades | | TECH | 765 | Evaluation of Training in Industrial Settings | | TECH | 772 | Curriculum Development in Technology Education | | LEST | 860 | Qualitative Research | | LEST | 862 | Quantitative Research | | LEST | 864 | Ethnographic Methods in Social Science Research | | LEST | 865 | Mixed Methods Research | | ADED | 708 | Instructional Methods in Adult Education | | ADED | 719 | Assessment and Evaluation | | ADED | 722 | Diverse Perspectives in Adult Education | | ADED | 776 | Principles of College Teaching | | CUIN | 724 | Problems and Trends in Teaching Science | | CUIN | 727 | Workshop Method of Teaching Math | | CUIN | 753 | Teaching Engineering and Technology in Middle School | | CUIN | 784 | Current Research in Secondary Education | | AGED | 703 | Scientific Methods in Education Research I | | | | | | AGED 704 | Foundations and Philosophy of Agricultural Education | |----------|--| | AGED 711 | Advanced Teaching & Assessment Methodology | | AGED 751 | Agricultural Education Across the Curriculum | | AGED 752 | Special Populations in Agricultural Education | The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. # **Technology Management** The Technology Management Ph.D. concentration course requirements (18 credit hours; 15 credit hours post M.S.) are: **Technology Management Foundations** (9 credit hours) The purpose of the Foundation requirements is to provide a framework for foundational concepts: AET 701 Technology Management Principles AET 810 Project Management Essentials **AET 820 Managing R&D Processes** **Technology Management Expertise & Research Specialization** (9 credit hours; 6 credit hours post M.S.): Students are required to complete a coherent sequence of graduate courses in Technology Management. The purpose of this requirement is to provide depth of understanding of Technology Management concepts, in particular, concepts that may be the focus of research activities. AET 700 Graduate Seminar AET 702 Technology Management Strategies AET 703 Technology Management Analytics AET 704 Technology Management Research AET 705 Design of Experiments **AET 710 Manufacturing Materials** AET 715 Tool Technology AET 716 Glass Processing **AET 720 Industrial Economics** AET 721 Industrial Operational Management AET 722 Six Sigma Advanced Topics AET 735 Manufacturing Organization and Management AET 745 Managing New Product Development AET 755 Production Management and Control **AET 760 Advanced CNC Machines** AET 770 Managing Total Quality Systems AET 772 Strategic Concepts in Quality AET 775 Decision Modeling and Analysis AET 780 Reliability Testing and Analysis AET 784 Internship **AET 830 Internet of Things Technology** **AET 840 Industrial Fire Protection** **AET 885 Special Topics** CM 679 Environmental Issues in Construction Management CM 708 Construction Cost Estimating and Project Controls CM 710 Advanced Construction Practices & Organization CM 715 Productivity & Methods Improvement in Construction CM 720 Contracts Administration CM 762 International Construction Management CM 764 Risk Management in Construction CM 780 Trends in CM of International Projects CM 786 Construction Trends & Analysis LAND 781 Management in Construction ECEN 885 Advanced Robotic Systems INEN 833 Supply Chain System Engineering INEN 861 Nano Micro and Bio Manufacturing ## **Qualifying Examination courses:** The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. ### **General** The general (i.e., no concentration specified) track is for students who are interested in pursuing an area that is not one of our defined PhD concentrations. The curriculum will therefore vary per student and will be designed through the Plan of Study process in collaboration with your primary advisor, graduate coordinator and AST program director. #### **Qualifying Examination courses:** The Qualifying Examination will be based on first-year courses (equivalent to 18-20 credit hours), including Foundation Courses. #### **Dissertation Research** A student may not register for dissertation credits before passing the Qualifying Examination. #### **Qualifying Examination** The Qualifying Examination with both written and oral components is given to assess the student's competence in a broad range of relevant subject areas. Only students with unconditional status and in good academic standing may take the Qualifying Examination. No student is permitted to take the Qualifying Examination more than twice. A student not recommended for re-examination or who fails the exam on a second attempt may be dismissed from the doctoral program. #### **Preliminary Oral Examination** The Preliminary Oral Examination is conducted by the student's dissertation committee and is a written and oral defense of the student's dissertation proposal. Failure on the examination may result in dismissal from the doctoral program. The student's Dissertation Committee may permit one re-examination. At least one full semester must elapse before the re-examination. Failure on the second attempt will result in dismissal from the doctoral program. #### **Admission to Candidacy** Student will be admitted to candidacy upon successful completion of the Qualifying Exam and the Preliminary Exam. After admission to candidacy and before Final Oral Examination, a student may be dismissed from the doctoral program if the student's dissertation committee determines that the student is not making satisfactory progress. #### **Final Oral Examination** The Final Oral Examination is conducted by the student's dissertation committee. This examination is the final dissertation defense presentation that is scheduled after a dissertation is completed. The examination may be held no earlier than one semester (or four months) after admission to candidacy. Failure on the examination may result in dismissal from the doctoral program. The student's Dissertation Committee may permit one re-examination. At least one full semester must elapse before the re-examination. Failure on the second attempt will result in dismissal from the doctoral program. #### **Submission of Dissertation** Upon passing the Ph.D. Final Oral Examination, the Ph.D. student must have the dissertation approved by each member of the student's Dissertation Committee. The approved dissertation must be submitted to The Graduate College by the deadline given in the academic calendar and must conform to the Graduate College's guidelines for theses and dissertations. Please refer to the AST Student Handbook for full description of program guidelines, policies, requirements and expectations.